簡易檢索 / 詳目顯示

研究生: Kassa Belay Ibrahim
Kassa Belay Ibrahim
論文名稱: Conductive and Robust Magneli-phase Ti4O7 Decorated Ni-based Layered Double Hydroxides towards Oxygen Evolution and Reduction Reaction
Conductive and Robust Magneli-phase Ti4O7 Decorated Ni-based Layered Double Hydroxides towards Oxygen Evolution and Reduction Reaction
指導教授: 蘇威年
Wei-Nien Su
口試委員: Wei-Nien Su
Wei-Nien Su
Bing-Joe Hwang
Bing-Joe Hwang
Chen-Hao Wang
Chen-Hao Wang
Shawn D. Lin
Shawn D. Lin
Jing-Shan Do
Jing-Shan Do
Li-Chyong Chen
Li-Chyong Chen
Ching-Hsiang Chen
Ching-Hsiang Chen
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 204
中文關鍵詞: Layered double hydroxidesOxygen reduction reactionOxygen evolution reactionMagnéli phase Ti4O73D-FL-NiRu-LDHNiFe-LDHelectronic and strain effect
外文關鍵詞: Layered double hydroxides, Oxygen reduction reaction, Oxygen evolution reaction, Magnéli phase Ti4O7, 3D-FL-NiRu-LDH, NiFe-LDH, electronic and strain effect
相關次數: 點閱:206下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
由於現代社會不斷增長的能源需求,造成全球暖化和自然資源的枯竭,我們正處在尋求以再生能源替代化石燃料的時代。因此,環保的電源技術如可充電金屬空氣電池,再生燃料電池和水分解設備等先進能源轉換技術,其商業可行性被科學家寄予厚望。電化學能量轉換和存儲元件最重要的挑戰之一,是提高氧氣還原反應(Oxygen Reduction Reaction, ORR)和氧氣析出反應(Oxygen Evolution Reaction, OER)的效率,這都需要高效和高穩定的電催化劑。到目前為止,鉑(Pt),鈀(Pd),氧化銥(IrO2)和氧化釕(RuO2)等含貴金屬之催化劑雖有不錯的反應動力表現。然而,其他催化劑因為高過電位和遲緩的反應動力表現,ORR / OER活性往往令人難以滿意;加上,貴金屬的有限儲量,阻礙了這些技術整體商業化發展。如何同時改善電催化觸媒的活性和穩定性,特別是在嚴苛的鹼性環境下,是重要的挑戰。因此,本研究的目的就是希望透過開發新觸媒,以及結合堅實、導電的載體材料來克服上述之難題。實際以具高導電性氧化物載體- Magnéli相Ti4O7,與鎳釕層狀雙氫氧化物 (3D-FL-NiRu-LDH) 和鎳鐵層狀雙氫氧化物 (NiFe-LDH) 結合,分別做為ORR和OER的電催化劑,期對於先進能量轉換設備,可延長其觸媒耐久性與降低成本,能產生重大貢獻。
論文的第一部分是強調“以高導電性氧化物 Magnéli相Ti4O7綴飾的三維奈米花狀鎳釕層狀雙氫氧化物(3D-FL-NiRu-LDH / Ti4O7)作為高性能氧還原電催化劑”。目的在解決ORR電催化劑的兩個基本問題和挑戰,即增加活性位址數和提高穩定性。透過將層狀材料工程化為三維花狀形貌,使得鎳釕層狀雙氫氧化物的活性位址數大幅增加,讓更多的表面曝露於電解質。第二個主要挑戰是改善LDH電催化劑本身導電性和耐久性不佳的問題。在這裡,我們首次通過簡單的原位生長方法,導入Magnéli相Ti4O7奈米柱於花狀的鎳釕層狀雙氫氧化物中。綴飾Magnéli相Ti4O7不僅顯著提高了層狀雙氫氧化物奈米片催化劑的活性,而且提升了穩定性。所合成的材料催化氧氣還原反應,在45小時測試後仍保留98%的活性,超過了LDH催化劑在鹼性介質下的所有已知報導。Ti4O7的關鍵作用是提供LDH催化劑的有效電荷轉移網絡,以及經XPS實驗證實的強耦合相互作用,來避免LDH催化劑的團聚。因此,所開發的催化劑具有優異的導電性和耐久性。而所揭示透過引入堅實導電材與LDH催化劑結合的方法,也為開發高效且耐用的電催化系統提供了嶄新的可能。
論文的第二部分是前述工作的延伸,但修改材料設計,以針對不同應用。它是關於用Magnéli相Ti4O7裝飾的鎳鐵層狀雙氫氧化物 (NiFe-LDH) ,作為氧氣析出反應 (OER) 電催化劑。由於反應動力學不良,尋找更好的OER電催化劑是必須的。鎳鐵層狀雙氫氧化物具有相當的潛力,在鹼性電解液中表現最佳。然而,LDH的電導率差和易堆疊的性質,限制其活性和活性位點的曝露。因此,我們用高導電性和耐久的Magnéli相Ti4O7來修飾LDH,以提高電導率,並產生更多的懸空鍵和無序結構,從而產生空位並在NiFe-LDH上曝露更多的活性位點。通過一系列分析,證明NiFe-LDH-Ti4O7的OER性能較先前文獻更好。改善可歸因於電荷轉移效應,以及源自Ti4O7和NiFe-LDH之間結構變形的應變效應。因此合成的複合NiFe-LDH- Ti4O7對OER具有極好的催化活性,在起始電位僅1.42 V時,可連續30小時,保持100%的電流密度。溶液中Fe3 +離子的存在可與Ti4O7結合,生成用Ti4O7修飾的非均相NiFe-LDH位點。這些NiFe-LDH- Ti4O7位點帶來顯著改善的OER活性。
關鍵字: 層狀雙氫氧化物、氧氣還原反應、氧氣析出反應、Magnéli 亞氧化鈦、三維奈米花狀鎳釕層狀雙氫氧化物、鎳鐵層狀雙氫氧化物、電子與應變效應


Abstract

We are in the era of seeking renewable energy to substitute fossil fuels due to the increasing demand for energy of the modern society, global warming, and depletion of natural sources. Therefore, globalization of advanced energy conversion technologies like rechargeable metal-air batteries (MAB’s), water-splitting, and regenerated fuel cells (RFCs) devices are highly regarded by the scientists as an environmentally friendly power source with global commercial viability. One of the most important challenges for electrochemically energy conversion and storage devices is to increase the efficiencies of both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), which will require the development of efficient and stable electrocatalysts. So far, Pt, Pd, IrO2, and RuO2 noble metal catalysts have acceptable kinetics. However, other electrocatalysts usually have high overpotential and sluggish kinetics and they give unsatisfactory ORR/OER performance. Further, limited reserves of noble-metal-based catalysts have precluded these renewable energy technologies from large-scale commercial applications. In many cases, how to improve both the activity and stability of an electrocatalyst is still an important challenge, especially under harsh alkaline conditions. The objectives of this dissertation are to tackle the challenge by developing new electrocatalysts and introducing robust and conductive support. The introduced materials are robust and conductive Magnéli phase Ti4O7 decorated in 3D-FL-NiRu-LDH and NiFe-LDH as ORR and OER electrocatalyst, respectively. This will have a great impact on lengthening the lifetime and reduce cost in energy conversion devices.

The first part of the dissertation emphasizes “Robust and conductive Magnéli Phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH (3D-FL-NiRu-LDH/Ti4O7) as high-performance oxygen reduction electrocatalyst”. This work has intended to discuss two basic issues and challenges in ORR electrocatalysts, namely increasing site population and enhancing the stability. The site population of the NiRu-LDH increased by engineering the morphology from 2D to 3D flowerlike material and the approach resulted in more surfaces exposed to the electrolyte. The second main challenge is to improve the intrinsically poor conductivity of LDHs and their short durability. In order to address this issue, we introduce robust, conductive and stable Magnéli phase Ti4O7 nano-pillar into flower-like NiRu-LDH through an easy in situ growth approach for the first time. The decoration of Magnéli phase Ti4O7 not only significantly improves the activity but also the stability of LDH nanosheet catalyst. The as-synthesized materials retain 98% of the activity after 45 h which surpasses all the reported LDH catalysts for oxygen reduction reaction under alkaline media. The key roles of Ti4O7 are to provide the effective charge transfer networks of LDH catalyst and prevent agglomeration of LDH catalysts though strongly coupled interactions evidenced by XPS. Therefore, the developed catalyst demonstrates promising conductivity, together with durability. The reported approach of introducing a robust and conductive pillar coupled with LDH catalysts provides a novel pathway for developing a highly efficient and durable electrocatalyst.

The second part of this work is mediate extension of the first work but with some modification material for the application. Based on this, it is concerned with NiFe-LDH decorated by Magnéli phase Ti4O7 for OER electrocatalyst. An earth-abundant and highly efficient electrocatalyst are essential for OER due to its poor kinetics. NiFe-LDH is most promising OER catalysts, which perform best in alkaline electrolytes. However, the poor conductivity and the stacking structure of LDH limit its activity and exposure of active site, respectively. Therefore, we decorate LDH with highly conductive and robust Magnéli phase Ti4O7 in order to both boost conductivity and generate more dangling bonds and disordered structure that would result in vacancy and expose more active site on NiFe-LDH. In this work, a series of analyses reveal that the improved OER performances of NiFe-LDH-Ti4O7 compared to previously published works. This series improved performance is originated from the charge transfer effect, and strain effect between Ti4O7 and NiFe-LDH that results in structural deformation. Based on this, the as-synthesized NiFe-LDH-Ti4O7 nano-sheet exhibit an excellent catalytic activity for OER with ultra-small onset potential of only 1.42 and retain 100% of the current density after 30 hr. Furthermore, the presence of Fe3+ ions in the solution could bond with the Ti4O7 generating heterogeneous NiFe-LDH sites decorated with Ti4O7. These NiFe-LDH-Ti4O7 sites exhibited markedly an improved OER activity.

In general, the use of Ti4O7 to decorate LDHs mainly enhances conductivity, stability (relative to carbon supports) and stacking between LDH layers during OER and ORR measurement. Additionally, it can also electronic and strain effect in the material that will result in vacancy and disordered in a structure of LDHs.

Table of Contents 1 Overview of energy conversion devices 1 1.1 Fundamentals of oxygen electrode reactions 4 1.1.1. Oxygen Evolution Reaction (OER) 5 1.1.2. Oxygen Reduction Reaction (ORR) 7 1.2 Current issues and challenges in oxygen electrode catalysts 9 1.2.1 Cost and reliability 9 1.2.2 Durability and Stability 10 1.2.3 Carbon support degradation 11 1.3 Motivation of this study 12 2 Recent advances in synthesis and catalytic application of layered double hydroxides (LDHs) 17 2.1 Synthesis methods of LDHs 22 2.1.1 Urea hydrolysis method 23 2.1.2 Hydrothermal/Solvothermal method 23 2.1.3 Co-precipitation method 24 2.1.4 Micro-wave method 25 2.1.5 Electrochemical approach’s 25 2.2 Issues and challenges of LDH base electrocatalysts 26 2.3 Approaches used to address issues and challenges in LDHs 27 2.3.1 Morphology modification 29 2.3.2 Vacancy defect formation 35 2.3.3 Coupling with a conductive material 42 2.4 Recent developments in Ti4O7 54 2.5 Aim and objective of the Thesis 59 3 Experimental Sections 61 3.1 Chemicals and reagents 61 3.2 Experimental methods 62 3.2.1 Preparation of Ti4O7 as a catalyst support 62 3.2.2 Synthesis of 3D nano-flower-like NiRu-LDH 64 3.2.3 Synthesis of 3D-FL-NiRu-LDH/Ti4O7 65 3.2.4 Synthesis of NiFe-LDH 67 3.2.5 Synthesis of NiFe-LDH/Ti4O7 68 3.3 Characterizations techniques 69 3.3.1 Physical characterization techniques 69 3.3.2 Electrode preparation and electrochemical measurements 71 4 Robust and conductive Magnéli Phase Ti4O7 decorated on 3D-nanoflower like NiRu-LDH as high-performance oxygen reduction electrocatalyst 73 4.1 The scope of the study 73 4.2 Material characterizations 75 4.3 ORR performance of 3D-FL-NiRu-LDH/Ti4O7 90 5 The synergy between defected NiFe-LDH nano-sheet and defected Ti4O7 as highly active oxygen evolution electrocatalyst 103 5.1 The scope of the study 103 5.2 Material characterization 106 5.3 OER performance evaluation for NiFe-LDH-Ti4O7 124 6 Conclusions and perspectives 135 6.1 Conclusions 135 6.2 Future perspectives 136

Reference
1. Qian, L.; Chen, W.; Liu, M.; Jia, Q.; Xiao, D., One-Step Electrodeposition of S-Doped Cobalt–Nickel Layered Double Hydroxides on Conductive Substrates and Their Electrocatalytic Activity in Alkaline Media. ChemElectroChem 2016, 3, 950-958.
2. Chu, S.; Majumdar, A., Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294.
3. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G., Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. (Washington, DC, U. S.) 2010, 110, 6474-6502.
4. Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M., Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
5. Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W.-G.; Yoon, T.; Kim, K. S., Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis 2017, 7, 7196-7225.
6. Wang, Y.-J.; Wilkinson, D. P.; Zhang, J., Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chem. Rev. (Washington, DC, U. S.) 2011, 111, 7625-7651.
7. Cheng, F.; Chen, J., Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts. Chem. Soc. Rev. 2012, 41, 2172-2192.
8. Jiahai, W.; Wei, C.; Qian, L.; Zhicai, X.; M., A. A.; Xuping, S., Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting. Adv. Mater. 2016, 28, 215-230.
9. Hunter, B. M.; Gray, H. B.; Müller, A. M., Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chem. Rev. (Washington, DC, U. S.) 2016, 116, 14120-14136.
10. Lu, Y.-C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y., Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance. Energy & Environmental Science 2013, 6, 750-768.
11. Kumar, A.; Ciucci, F.; Morozovska, A. N.; Kalinin, S. V.; Jesse, S., Measuring Oxygen Reduction/Evolution Reactions on the Nanoscale. Nature Chem. 2011, 3, 707.
12. Audichon, T.; Napporn, T. W.; Canaff, C.; Morais, C.; Comminges, C.; Kokoh, K. B., Iro2 Coated on Ruo2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting. The Journal of Physical Chemistry C 2016, 120, 2562-2573.
13. Huang, K.; Song, T.; Morales-Collazo, O.; Jia, H.; Brennecke, J. F., Enhancing Pt/C Catalysts for the Oxygen Reduction Reaction with Protic Ionic Liquids: The Effect of Anion Structure. J. Electrochem. Soc. 2017, 164, F1448-F1459.
14. Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y., Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis. Energy & Environmental Science 2015, 8, 1404-1427.
15. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.
16. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T., Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCS. Applied Catalysis B: Environmental 2005, 56, 9-35.
17. Holger, D.; Christian, L.; Tobias, R.; Marcel, R.; Stefan, R.; Peter, S., The Mechanism of Water Oxidation: From Electrolysis Via Homogeneous to Biological Catalysis. ChemCatChem 2010, 2, 724-761.
18. Gasteiger, H. A.; Marković, N. M., Just a Dream—or Future Reality? Science (New York, N.Y.) 2009, 324, 48-49.
19. Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; Wickman, B.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff, I., Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses. ChemElectroChem 2014, 1, 2075-2081.
20. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y., Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters 2012, 3, 399-404.
21. Kötz, R.; Lewerenz, H. J.; Stucki, S., Xps Studies of Oxygen Evolution on Ru and RuO2 Anodes. J. Electrochem. Soc. 1983, 130, 825-829.
22. Cherevko, S., et al., Oxygen and Hydrogen Evolution Reactions on Ru, RuO2, Ir, and IrO2 Thin Film Electrodes in Acidic and Alkaline Electrolytes: A Comparative Study on Activity and Stability. Catal. Today 2016, 262, 170-180.
23. Ding, M.; He, Q.; Wang, G.; Cheng, H.-C.; Huang, Y.; Duan, X., An on-Chip Electrical Transport Spectroscopy Approach for in Situ Monitoring Electrochemical Interfaces. Nature Communications 2015, 6, 7867.
24. Doyle, R. L.; Lyons, M. E. G., An Electrochemical Impedance Study of the Oxygen Evolution Reaction at Hydrous Iron Oxide in Base. Phys. Chem. Chem. Phys. 2013, 15, 5224-5237.
25. Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H., An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.
26. Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R., Nanostructured Electrocatalysts with Tunable Activity and Selectivity. Nature Reviews Materials 2016, 1, 16009.
27. Sung‐Fu, H.; Ying‐Ya, H.; Chia‐Jui, C.; Chia‐Shuo, H.; Nian‐Tzu, S.; Ting‐Shan, C.; Ming, C. H., Unraveling Geometrical Site Confinement in Highly Efficient Iron‐Doped Electrocatalysts toward Oxygen Evolution Reaction. Advanced Energy Materials 2018, 8, 1701686.
28. García-Osorio, D. A.; Jaimes, R.; Vazquez-Arenas, J.; Lara, R. H.; Alvarez-Ramirez, J., The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes Via Eis Transfer Functions: •OH Formation. J. Electrochem. Soc. 2017, 164, E3321-E3328.
29. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K., Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Scientific Reports 2015, 5, 13801.
30. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y., A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science (New York, N.Y.) 2011, 334, 1383-1385.
31. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y., Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal–Air Batteries. Nature Chem. 2011, 3, 546.
32. Ramaswamy, N.; Mukerjee, S., Influence of Inner- and Outer-Sphere Electron Transfer Mechanisms During Electrocatalysis of Oxygen Reduction in Alkaline Media. The Journal of Physical Chemistry C 2011, 115, 18015-18026.
33. Hsieh, B.-J.; Tsai, M.-C.; Pan, C.-J.; Su, W.-N.; Rick, J.; Chou, H.-L.; Lee, J.-F.; Hwang, B.-J., Tuning Metal Support Interactions Enhances the Activity and Durability of TiO2-Supported Pt Nanocatalysts. Electrochim. Acta 2017, 224, 452-459.
34. Li, R.; Wei, Z.; Gou, X., Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catalysis 2015, 5, 4133-4142.
35. Burkitt, R.; Whiffen, T. R.; Yu, E. H., Iron Phthalocyanine and MnOx Composite Catalysts for Microbial Fuel Cell Applications. Applied Catalysis B: Environmental 2016, 181, 279-288.
36. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B 2004, 108, 17886-17892.
37. Vojvodic, A.; Nørskov, J. K., New Design Paradigm for Heterogeneous Catalysts. National Science Review 2015, 2, 140-143.
38. Liu, S.; White, M. G.; Liu, P., Mechanism of Oxygen Reduction Reaction on Pt(111) in Alkaline Solution: Importance of Chemisorbed Water on Surface. The Journal of Physical Chemistry C 2016, 120, 15288-15298.
39. Chai, G.-L.; Hou, Z.; Ikeda, T.; Terakura, K., Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites. The Journal of Physical Chemistry C 2017, 121, 14524-14533.
40. Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J., Water Electrolysis on La1−XSrxCOO3−Δ Perovskite Electrocatalysts. Nature Communications 2016, 7, 11053.
41. Pfeifer, V.; Jones, T. E.; Velasco Velez, J. J.; Arrigo, R.; Piccinin, S.; Havecker, M.; Knop-Gericke, A.; Schlogl, R., In Situ Observation of Reactive Oxygen Species Forming on Oxygen-Evolving Iridium Surfaces. Chemical Science 2017, 8, 2143-2149.
42. Lin, B. Y. S.; Kirk, D. W.; Thorpe, S. J., Performance of Alkaline Fuel Cells: A Possible Future Energy System? J. Power Sources 2006, 161, 474-483.
43. Epping Martin, K.; Kopasz, J. P.; McMurphy, K. W., Status of Fuel Cells and the Challenges Facing Fuel Cell Technology Today. In Fuel Cell Chemistry and Operation, American Chemical Society: 2010; Vol. 1040, pp 1-13.
44. McLean, G. F.; Niet, T.; Prince-Richard, S.; Djilali, N., An Assessment of Alkaline Fuel Cell Technology. Int. J. Hydrogen Energy 2002, 27, 507-526.
45. Wu, J.; Yuan, X. Z.; Martin, J. J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W., A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies. J. Power Sources 2008, 184, 104-119.
46. Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; Toma, F. M.; Ross, P. N.; Yano, J.; Liu, Z.; Crumlin, E. J., Elucidating the Alkaline Oxygen Evolution Reaction Mechanism on Platinum. Journal of Materials Chemistry A 2017, 5, 11634-11643.
47. Tian, Z. Q.; Jiang, S. P.; Liu, Z.; Li, L., Polyelectrolyte-Stabilized Pt Nanoparticles as New Electrocatalysts for Low Temperature Fuel Cells. Electrochem. Commun. 2007, 9, 1613-1618.
48. Roen, L. M.; Paik, C. H.; Jarvi, T. D., Electrocatalytic Corrosion of Carbon Support in Pemfc Cathodes. Electrochem. Solid-State Lett. 2004, 7, A19-A22.
49. Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J., Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2011, 133, 11716-11724.
50. Antolini, E., Carbon Supports for Low-Temperature Fuel Cell Catalysts. Applied Catalysis B: Environmental 2009, 88, 1-24.
51. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction. Nat. Mater. 2011, 10, 780.
52. Cavani, F.; Trifirò, F.; Vaccari, A., Hydrotalcite-Type Anionic Clays: Preparation, Properties and Applications. Catal. Today 1991, 11, 173-301.
53. Li, Q.; Zhiyi, L.; Tianhao, X.; Xiaochao, W.; Yang, T.; Yaping, L.; Ziyang, H.; Xiaoming, S.; Xue, D., Trinary Layered Double Hydroxides as High‐Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials 2015, 5, 1500245.
54. Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X., Three-Dimensional NiFe Layered Double Hydroxide Film for High-Efficiency Oxygen Evolution Reaction. Chem. Commun. (Cambridge, U. K.) 2014, 50, 6479-6482.
55. Zhang, G.; Li, Y.; Zhou, Y.; Yang, F., Nife Layered-Double-Hydroxide-Derived NiO-NiFe2O4/Reduced Graphene Oxide Architectures for Enhanced Electrocatalysis of Alkaline Water Splitting. ChemElectroChem 2016, 3, 1927-1936.
56. Friebel, D., et al., Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.
57. Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W., Reactive Fe-Sites in Ni/Fe (Oxy)Hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.
58. Corrigan, D. A., The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. J. Electrochem. Soc. 1987, 134, 377-384.
59. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W., Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753.
60. Louie, M. W.; Bell, A. T., An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.
61. Yao, C.; Li, F.; Li, X.; Xia, D., Fiber-Like Nanostructured Ti4O7 Used as Durable Fuel Cell Catalyst Support in Oxygen Reduction Catalysis. J. Mater. Chem. 2012, 22, 16560-16565.
62. Theiss, F. L.; Ayoko, G. A.; Frost, R. L., Synthesis of Layered Double Hydroxides Containing Mg2+, Zn2+, Ca2+ and Al3+ Layer Cations by Co-Precipitation Methods-a Review. Appl. Surf. Sci. 2016, 383, 200-213.
63. Mishra, G.; Dash, B.; Pandey, S., Layered Double Hydroxides: A Brief Review from Fundamentals to Application as Evolving Biomaterials. Appl. Clay Sci. 2018, 153, 172-186.
64. Sarfraz, M.; Shakir, I., Recent Advances in Layered Double Hydroxides as Electrode Materials for High-Performance Electrochemical Energy Storage Devices. Journal of Energy Storage 2017, 13, 103-122.
65. Rives, V.; Angeles Ulibarri, M. a., Layered Double Hydroxides (LDH) Intercalated with Metal Coordination Compounds and Oxometalates. Coord. Chem. Rev. 1999, 181, 61-120.
66. Omwoma, S.; Chen, W.; Tsunashima, R.; Song, Y.-F., Recent Advances on Polyoxometalates Intercalated Layered Double Hydroxides: From Synthetic Approaches to Functional Material Applications. Coord. Chem. Rev. 2014, 258-259, 58-71.
67. Scarpellini, D.; Falconi, C.; Gaudio, P.; Mattoccia, A.; Medaglia, P. G.; Orsini, A.; Pizzoferrato, R.; Richetta, M., Morphology of Zn/Al Layered Double Hydroxide Nanosheets Grown onto Aluminum Thin Films. Microelectron. Eng. 2014, 126, 129-133.
68. Fan, G.; Li, F.; Evans, D. G.; Duan, X., Catalytic Applications of Layered Double Hydroxides: Recent Advances and Perspectives. Chem. Soc. Rev. 2014, 43, 7040-7066.
69. Lu, Z.; Zhu, W.; Lei, X.; Williams, G. R.; O'Hare, D.; Chang, Z.; Sun, X.; Duan, X., High Pseudocapacitive Cobalt Carbonate Hydroxide Films Derived from Coal Layered Double Hydroxides. Nanoscale 2012, 4, 3640-3643.
70. Latorre-Sanchez, M.; Atienzar, P.; Abellán, G.; Puche, M.; Fornés, V.; Ribera, A.; García, H., The Synthesis of a Hybrid Graphene–Nickel/Manganese Mixed Oxide and Its Performance in Lithium-Ion Batteries. Carbon 2012, 50, 518-525.
71. Zhang, Y.; Cui, B.; Zhao, C.; Lin, H.; Li, J., Co-Ni Layered Double Hydroxides for Water Oxidation in Neutral Electrolyte. Phys. Chem. Chem. Phys. 2013, 15, 7363-7369.
72. Mousty, C., Biosensing Applications of Clay-Modified Electrodes: A Review. Anal. Bioanal. Chem. 2010, 396, 315-325.
73. Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Muller, A. M., Effect of Interlayer Anions on [NiFe]-LDH Nanosheet Water Oxidation Activity. Energy & Environmental Science 2016, 9, 1734-1743.
74. Gillman, G. P.; Noble, M. A.; Raven, M. D., Anion Substitution of Nitrate-Saturated Layered Double Hydroxide of Mg and Al. Appl. Clay Sci. 2008, 38, 179-186.
75. Xu, Z. P.; Jin, Y.; Liu, S.; Hao, Z. P.; Lu, G. Q., Surface Charging of Layered Double Hydroxides During Dynamic Interactions of Anions at the Interfaces. J. Colloid Interface Sci. 2008, 326, 522-529.
76. Wang, Q.; O’Hare, D., Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chem. Rev. (Washington, DC, U. S.) 2012, 112, 4124-4155.
77. Li, K.; Kumada, N.; Yonesaki, Y.; Takei, T.; Kinomura, N.; Wang, H.; Wang, C., The Ph Effects on the Formation of Ni/Al Nitrate Form Layered Double Hydroxides (LDHs) by Chemical Precipitation and Hydrothermal Method. Mater. Chem. Phys. 2010, 121, 223-229.
78. Inayat, A.; Klumpp, M.; Schwieger, W., The Urea Method for the Direct Synthesis of ZnAl Layered Double Hydroxides with Nitrate as the Interlayer Anion. Appl. Clay Sci. 2011, 51, 452-459.
79. Qu, J.; Zhang, Q.; Li, X.; He, X.; Song, S., Mechanochemical Approaches to Synthesize Layered Double Hydroxides: A Review. Appl. Clay Sci. 2016, 119, 185-192.
80. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y., A General Strategy for Nanocrystal Synthesis. Nature 2005, 437, 121.
81. Xu, Z. P.; Lu, G. Q., Hydrothermal Synthesis of Layered Double Hydroxides (LDHs) from Mixed MgO and Al2O3:  Ldh Formation Mechanism. Chem. Mater. 2005, 17, 1055-1062.
82. Pang, X.; Sun, M.; Ma, X.; Hou, W., Synthesis of Layered Double Hydroxide Nanosheets by Coprecipitation Using a T-Type Microchannel Reactor. J. Solid State Chem. 2014, 210, 111-115.
83. Chang, Z.; Evans, D. G.; Duan, X.; Vial, C.; Ghanbaja, J.; Prevot, V.; de Roy, M.; Forano, C., Synthesis of [Zn–Al–Co3] Layered Double Hydroxides by a Coprecipitation Method under Steady-State Conditions. J. Solid State Chem. 2005, 178, 2766-2777.
84. Jubri, Z.; Hussein, M. Z.; Yahaya, A.; Zainal, Z., The Effect of Microwave-Assisted Synthesis on the Physico-Chemical Properties of Pamoate-Intercalated Layered Double Hydroxide. Nanoscience Methods 2012, 1, 152-163.
85. Dresp, S.; Strasser, P., Simplified Microwave Assisted Solvothermal One Pot Synthesis of Highly Active Nickel-Iron Layered Double Hydroxide as Oxygen Evolution Reaction Catalyst. ECS Trans. 2016, 75, 1113-1119.
86. P., B.; I., G.; M., H.; M., L. F.; V., R., Incidence of Microwave Hydrothermal Treatments on the Crystallinity Properties of Hydrotalcite‐Like Compounds. Z. Anorg. Allg. Chem. 2007, 633, 1815-1819.
87. Bergadà, O.; Vicente, I.; Salagre, P.; Cesteros, Y.; Medina, F.; Sueiras, J. E., Microwave Effect During Aging on the Porosity and Basic Properties of Hydrotalcites. Microporous Mesoporous Mater. 2007, 101, 363-373.
88. Gong, J.; Wang, L.; Miao, X.; Zhang, L., Efficient Stripping Voltammetric Detection of Organophosphate Pesticides Using Nanopt Intercalated Ni/Al Layered Double Hydroxides as Solid-Phase Extraction. Electrochem. Commun. 2010, 12, 1658-1661.
89. Liang, H.; Miao, X.; Gong, J., One-Step Fabrication of Layered Double Hydroxides/Graphene Hybrid as Solid-Phase Extraction for Stripping Voltammetric Detection of Methyl Parathion. Electrochem. Commun. 2012, 20, 149-152.
90. Song, F.; Hu, X., Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis. 2014, 5, 4477.
91. Yu, X.; Zhang, M.; Yuan, W.; Shi, G., A High-Performance Three-Dimensional Ni-Fe Layered Double Hydroxide/Graphene Electrode for Water Oxidation. Journal of Materials Chemistry A 2015, 3, 6921-6928.
92. Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F., Spatially Confined Hybridization of Nanometer‐Sized NiFe Hydroxides into Nitrogen‐Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Adv. Mater. 2015, 27, 4516-4522.
93. Zhu, X.; Tang, C.; Wang, H.-F.; Li, B.-Q.; Zhang, Q.; Li, C.; Yang, C.; Wei, F., Monolithic-Structured Ternary Hydroxides as Freestanding Bifunctional Electrocatalysts for Overall Water Splitting. Journal of Materials Chemistry A 2016, 4, 7245-7250.
94. Chen, S.; Duan, J.; Jaroniec, M.; Qiao, S. Z., Three‐Dimensional N‐Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution. Angewandte Chemie International Edition 2013, 52, 13567-13570.
95. Song, F.; Hu, X., Ultrathin Cobalt–Manganese Layered Double Hydroxide is an Efficient Oxygen Evolution Catalyst. J. Am. Chem. Soc. 2014, 136, 16481-16484.
96. Han, X.; Yu, C.; Yang, J.; Zhao, C.; Huang, H.; Liu, Z.; Ajayan, P. M.; Qiu, J., Electrocatalysts: Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in Cofe-Layered Double Hydroxide Assembled on Graphene (Adv. Mater. Interfaces 7/2016). Advanced Materials Interfaces 2016, 3, n/a-n/a.
97. Kim, S. J.; Lee, Y.; Lee, D. K.; Lee, J. W.; Kang, J. K., Efficient Co-Fe Layered Double Hydroxide Photocatalysts for Water Oxidation under Visible Light. Journal of Materials Chemistry A 2014, 2, 4136-4139.
98. Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X., Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors. Adv. Funct. Mater. 2014, 24, 2938-2946.
99. Zhao, Y.; Li, B.; Wang, Q.; Gao, W.; Wang, C. J.; Wei, M.; Evans, D. G.; Duan, X.; O'Hare, D., NiTi-Layered Double Hydroxides Nanosheets as Efficient Photocatalysts for Oxygen Evolution from Water Using Visible Light. Chemical Science 2014, 5, 951-958.
100. Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X., Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials 2015, 5, 1500245-n/a.
101. Zhou, D., et al., NiCoFe-Layered Double Hydroxides/N-Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials, 1701905-n/a.
102. Zhao, Y., et al., Highly Dispersed TiO6 Units in a Layered Double Hydroxide for Water Splitting. Chemistry – A European Journal 2012, 18, 11949-11958.
103. Li, B.; Zhao, Y.; Zhang, S.; Gao, W.; Wei, M., Visible-Light-Responsive Photocatalysts toward Water Oxidation Based on NiTi-Layered Double Hydroxide/Reduced Graphene Oxide Composite Materials. ACS Appl. Mater. Interfaces 2013, 5, 10233-10239.
104. Fabio, D.; Peter, S., NiFe‐Based (Oxy)Hydroxide Catalysts for Oxygen Evolution Reaction in Non‐Acidic Electrolytes. Advanced Energy Materials 2016, 6, 1600621.
105. Dafeng, Y.; Yunxiao, L.; Jia, H.; Ru, C.; Liming, D.; Shuangyin, W., Defect Chemistry of Nonprecious‐Metal Electrocatalysts for Oxygen Reactions. Adv. Mater. 2017, 29, 1606459.
106. Reier, T.; Oezaslan, M.; Strasser, P., Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis 2012, 2, 1765-1772.
107. Le, Y.; Fan, Y. J.; Yuan, G. B.; Yan, L.; Wen, L. X., Hierarchical Hollow Nanoprisms Based on Ultrathin Ni‐Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity Towards Oxygen Evolution. Angewandte Chemie International Edition 2018, 57, 172-176.
108. Cao, L.-M.; Wang, J.-W.; Zhong, D.-C.; Lu, T.-B., Template-Directed Synthesis of Sulphur Doped NiCoFe Layered Double Hydroxide Porous Nanosheets with Enhanced Electrocatalytic Activity for the Oxygen Evolution Reaction. Journal of Materials Chemistry A 2018, 6, 3224-3230.
109. Huczko, A., Template-Based Synthesis of Nanomaterials. Applied Physics A 2000, 70, 365-376.
110. Hua, W.; Hongbin, F.; Jinghong, L., Graphene and Graphene‐Like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small 2014, 10, 2165-2181.
111. Song, F.; Hu, X., Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis. Nature Communications 2014, 5, 4477.
112. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid Exfoliation of Layered Materials. Science (New York, N.Y.) 2013, 340.
113. Zhou, P.; Wang, Y.; Xie, C.; Chen, C.; Liu, H.; Chen, R.; Huo, J.; Wang, S., Acid-Etched Layered Double Hydroxides with Rich Defects for Enhancing the Oxygen Evolution Reaction. Chem. Commun. (Cambridge, U. K.) 2017, 53, 11778-11781.
114. Manohara, G. V., Exfoliation of Layered Double Hydroxides (Ldhs): A New Route to Mineralize Atmospheric CO2. RSC Advances 2014, 4, 46126-46132.
115. Mao, N.; Zhou, C. H.; Tong, D. S.; Yu, W. H.; Cynthia Lin, C. X., Exfoliation of Layered Double Hydroxide Solids into Functional Nanosheets. Appl. Clay Sci. 2017, 144, 60-78.
116. Yanyong, W.; Yiqiong, Z.; Zhijuan, L.; Chao, X.; Shi, F.; Dongdong, L.; Mingfei, S.; Shuangyin, W., Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie International Edition 2017, 56, 5867-5871.
117. Rong, L.; Yanyong, W.; Dongdong, L.; Yuqin, Z.; Shuangyin, W., Water‐Plasma‐Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Adv. Mater. 2017, 29, 1701546.
118. Sun, Y.; Gao, S.; Lei, F.; Liu, J.; Liang, L.; Xie, Y., Atomically-Thin Non-Layered Cobalt Oxide Porous Sheets for Highly Efficient Oxygen-Evolving Electrocatalysts. Chemical Science 2014, 5, 3976-3982.
119. Smith, R. D. L.; Pasquini, C.; Loos, S.; Chernev, P.; Klingan, K.; Kubella, P.; Mohammadi, M. R.; Gonzalez-Flores, D.; Dau, H., Spectroscopic Identification of Active Sites for the Oxygen Evolution Reaction on Iron-Cobalt Oxides. Nature Communications 2017, 8, 2022.
120. Wang, Y.; Zhang, Y.; Liu, Z.; Xie, C.; Feng, S.; Liu, D.; Shao, M.; Wang, S., Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angew. Chem. 2017, 129, 5961-5965.
121. Sun, Y.; Gao, S.; Lei, F.; Xie, Y., Atomically-Thin Two-Dimensional Sheets for Understanding Active Sites in Catalysis. Chem. Soc. Rev. 2015, 44, 623-636.
122. Sun, Y.; Liu, Q.; Gao, S.; Cheng, H.; Lei, F.; Sun, Z.; Jiang, Y.; Su, H.; Wei, S.; Xie, Y., Pits Confined in Ultrathin Cerium(iv) Oxide for Studying Catalytic Centers in Carbon Monoxide Oxidation. Nature Communications 2013, 4, 2899.
123. Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S., Water‐Plasma‐Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Adv. Mater. 2017, 29, 1701546.
124. Zhang, J. J.; Wang, H. H.; Zhao, T. J.; Zhang, K. X.; Wei, X.; Jiang, Z. D.; Hirano, S. I.; Li, X. H.; Chen, J. S., Oxygen Vacancy Engineering of Co3O4 Nanocrystals through Coupling with Metal Support for Water Oxidation. ChemSusChem 2017, 10, 2875-2879.
125. Julien, C.; Massot, M.; Rangan, S.; Lemal, M.; Guyomard, D., Study of Structural Defects in Γ‐MnO2 by Raman Spectroscopy. J. Raman Spectrosc. 2002, 33, 223-228.
126. Liu, L. Z.; Li, T. H.; Wu, X. L.; Shen, J. C.; Chu, P. K., Identification of Oxygen Vacancy Types from Raman Spectra of SnO2 Nanocrystals. J. Raman Spectrosc. 2012, 43, 1423-1426.
127. Hong, J., et al., Exploring Atomic Defects in Molybdenum Disulphide Monolayers. Nature Communications 2015, 6, 6293.
128. Bao, J.; Zhang, X.; Fan, B.; Zhang, J.; Zhou, M.; Yang, W.; Hu, X.; Wang, H.; Pan, B.; Xie, Y., Ultrathin Spinel‐Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation. Angewandte Chemie International Edition 2015, 54, 7399-7404.
129. Kevane, C. J., Oxygen Vacancies and Electrical Conduction in Metal Oxides. Physical Review 1964, 133, A1431-A1436.
130. Song, J.; Huang, Z.-F.; Pan, L.; Zou, J.-J.; Zhang, X.; Wang, L., Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst. ACS Catalysis 2015, 5, 6594-6599.
131. Paier, J.; Penschke, C.; Sauer, J., Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chem. Rev. (Washington, DC, U. S.) 2013, 113, 3949-3985.
132. Nowotny, J.; Alim, M. A.; Bak, T.; Idris, M. A.; Ionescu, M.; Prince, K.; Sahdan, M. Z.; Sopian, K.; Mat Teridi, M. A.; Sigmund, W., Defect Chemistry and Defect Engineering of TiO2-Based Semiconductors for Solar Energy Conversion. Chem. Soc. Rev. 2015, 44, 8424-8442.
133. Guo, Y.; Tong, Y.; Chen, P.; Xu, K.; Zhao, J.; Lin, Y.; Chu, W.; Peng, Z.; Wu, C.; Xie, Y., Engineering the Electronic State of a Perovskite Electrocatalyst for Synergistically Enhanced Oxygen Evolution Reaction. Adv. Mater. 2015, 27, 5989-5994.
134. Ling, T., et al., Engineering Surface Atomic Structure of Single-Crystal Cobalt (II) Oxide Nanorods for Superior Electrocatalysis. Nature Communications 2016, 7, 12876.
135. Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L., Plasma‐Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angew. Chem. 2016, 128, 5363-5367.
136. Aschauer, U.; Chen, J.; Selloni, A., Peroxide and Superoxide States of Adsorbed O2 on Anatase Tio2 (101) with Subsurface Defects. Phys. Chem. Chem. Phys. 2010, 12, 12956-12960.
137. Lee, J.; Sorescu, D. C.; Deng, X., Electron-Induced Dissociation of CO2 on TiO2(110). J. Am. Chem. Soc. 2011, 133, 10066-10069.
138. Liu, L.; Zhao, C.; Li, Y., Spontaneous Dissociation of CO2 to Co on Defective Surface of Cu(I)/TiO2–X Nanoparticles at Room Temperature. The Journal of Physical Chemistry C 2012, 116, 7904-7912.
139. Li, H.; Shang, J.; Shi, J.; Zhao, K.; Zhang, L., Facet-Dependent Solar Ammonia Synthesis of BiOCl Nanosheets Via a Proton-Assisted Electron Transfer Pathway. Nanoscale 2016, 8, 1986-1993.
140. Zhuang, L.; Ge, L.; Yang, Y.; Li, M.; Jia, Y.; Yao, X.; Zhu, Z., Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1606793-n/a.
141. Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J., Rapid Room-Temperature Synthesis of Nanocrystalline Spinels as Oxygen Reduction and Evolution Electrocatalysts. Nature Chem. 2010, 3, 79.
142. Tsai, M.-C.; Nguyen, T.-T.; Akalework, N. G.; Pan, C.-J.; Rick, J.; Liao, Y.-F.; Su, W.-N.; Hwang, B.-J., Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO2 Support Enhances the Oxygen Reduction Reaction. ACS Catalysis 2016, 6, 6551-6559.
143. Dresp, S.; Luo, F.; Schmack, R.; Kuhl, S.; Gliech, M.; Strasser, P., An Efficient Bifunctional Two-Component Catalyst for Oxygen Reduction and Oxygen Evolution in Reversible Fuel Cells, Electrolyzers and Rechargeable Air Electrodes. Energy & Environmental Science 2016, 9, 2020-2024.
144. Sumboja, A.; Chen, J.; Zong, Y.; Lee, P. S.; Liu, Z., NiMn Layered Double Hydroxides as Efficient Electrocatalysts for the Oxygen Evolution Reaction and Their Application in Rechargeable Zn-Air Batteries. Nanoscale 2017, 9, 774-780.
145. Meng‐Qiang, Z.; Qiang, Z.; Jia‐Qi, H.; Fei, W., Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides ‐ Properties, Synthesis, and Applications. Adv. Funct. Mater. 2012, 22, 675-694.
146. Zhang, J.; Liu, J.; Xi, L.; Yu, Y.; Chen, N.; Sun, S.; Wang, W.; Lange, K. M.; Zhang, B., Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 3876-3879.
147. Zhu, W.; Liu, L.; Yue, Z.; Zhang, W.; Yue, X.; Wang, J.; Yu, S.; Wang, L.; Wang, J., Au Promoted Nickel–Iron Layered Double Hydroxide Nanoarrays: A Modular Catalyst Enabling High-Performance Oxygen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 19807-19814.
148. Yang, X.; Wang, C.-J.; Hou, C.-C.; Fu, W.-F.; Chen, Y., Self-Assembly of Ni–Fe Layered Double Hydroxide on Fe Foam as 3d Integrated Electrocatalysts for Oxygen Evolution: Dependence of the Catalytic Performance on Anions under in Situ Condition. ACS Sustainable Chemistry & Engineering 2018, 6, 2893-2897.
149. Fan, K., et al., Nickel–Vanadium Monolayer Double Hydroxide for Efficient Electrochemical Water Oxidation. Nature Communications 2016, 7, 11981.
150. Nai, J., et al., Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni–Co Double Hydroxides Nanocages. Advanced Energy Materials 2015, 5, 1401880.
151. Lu, Z.; Qian, L.; Tian, Y.; Li, Y.; Sun, X.; Duan, X., Ternary NiFeMn Layered Double Hydroxides as Highly-Efficient Oxygen Evolution Catalysts. Chem. Commun. (Cambridge, U. K.) 2016, 52, 908-911.
152. Han, N.; Zhao, F.; Li, Y., Ultrathin Nickel-Iron Layered Double Hydroxide Nanosheets Intercalated with Molybdate Anions for Electrocatalytic Water Oxidation. Journal of Materials Chemistry A 2015, 3, 16348-16353.
153. Bo, X.; Li, Y.; Hocking, R. K.; Zhao, C., NiFeCr Hydroxide Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS Appl. Mater. Interfaces 2017, 9, 41239-41245.
154. Dinh, K. N.; Zheng, P.; Dai, Z.; Zhang, Y.; Dangol, R.; Zheng, Y.; Li, B.; Zong, Y.; Yan, Q., Ultrathin Porous Nifev Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2018, 14, 1703257.
155. Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W., Hierarchical Hollow Nanoprisms Based on Ultrathin Ni‐Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity Towards Oxygen Evolution. Angewandte Chemie International Edition 2018, 57, 172-176.
156. Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X., Trinary Layered Double Hydroxides as High‐Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials 2015, 5, 1500245.
157. Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B., Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Adv. Funct. Mater., 0, 1706847.
158. Ko, Y.-J.; Oh, H.-S.; Kim, H., Effect of Heat-Treatment Temperature on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 2010, 195, 2623-2627.
159. Oh, H.-S.; Lim, K. H.; Roh, B.; Hwang, I.; Kim, H., Corrosion Resistance and Sintering Effect of Carbon Supports in Polymer Electrolyte Membrane Fuel Cells. Electrochim. Acta 2009, 54, 6515-6521.
160. Tang, D.; Han, Y.; Ji, W.; Qiao, S.; Zhou, X.; Liu, R.; Han, X.; Huang, H.; Liu, Y.; Kang, Z., A High-Performance Reduced Graphene Oxide/ZnCo Layered Double Hydroxide Electrocatalyst for Efficient Water Oxidation. Dalton Trans. 2014, 43, 15119-15125.
161. Wang, Y.; Wang, Z.; Rui, Y.; Li, M., Horseradish Peroxidase Immobilization on Carbon Nanodots/CoFe Layered Double Hydroxides: Direct Electrochemistry and Hydrogen Peroxide Sensing. Biosensors and Bioelectronics 2015, 64, 57-62.
162. Tang, D.; Liu, J.; Wu, X.; Liu, R.; Han, X.; Han, Y.; Huang, H.; Liu, Y.; Kang, Z., Carbon Quantum Dot/NiFe Layered Double-Hydroxide Composite as a Highly Efficient Electrocatalyst for Water Oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918-7925.
163. Wang, H.; Xiang, X.; Li, F., Facile Synthesis and Novel Electrocatalytic Performance of Nanostructured Ni-Al Layered Double Hydroxide/Carbon Nanotube Composites. J. Mater. Chem. 2010, 20, 3944-3952.
164. Zhou, D., et al., NiCoFe‐Layered Double Hydroxides/N‐Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials, 0, 1701905.
165. Fang, B.; Chaudhari, N. K.; Kim, M.-S.; Kim, J. H.; Yu, J.-S., Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell. J. Am. Chem. Soc. 2009, 131, 15330-15338.
166. Wu, J.; Ren, Z.; Du, S.; Kong, L.; Liu, B.; Xi, W.; Zhu, J.; Fu, H., A Highly Active Oxygen Evolution Electrocatalyst: Ultrathin Coni Double Hydroxide/CoO Nanosheets Synthesized Via Interface-Directed Assembly. Nano Research 2016, 9, 713-725.
167. Wang, X.; Sumboja, A.; Lin, M.; Yan, J.; Lee, P. S., Enhancing Electrochemical Reaction Sites in Nickel-Cobalt Layered Double Hydroxides on Zinc Tin Oxide Nanowires: A Hybrid Material for an Asymmetric Supercapacitor Device. Nanoscale 2012, 4, 7266-7272.
168. Li, Z.; Shao, M.; Zhou, L.; Zhang, R.; Zhang, C.; Han, J.; Wei, M.; Evans, D. G.; Duan, X., A Flexible All-Solid-State Micro-Supercapacitor Based on Hierarchical CuO@Layered Double Hydroxide Core–Shell Nanoarrays. Nano Energy 2016, 20, 294-304.
169. Shakir, I.; Shahid, M.; Rana, U. A.; Nashef, I. M. A.; Hussain, R., Nickel–Cobalt Layered Double Hydroxide Anchored Zinc Oxide Nanowires Grown on Carbon Fiber Cloth for High-Performance Flexible Pseudocapacitive Energy Storage Devices. Electrochim. Acta 2014, 129, 28-32.
170. Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z., Cu Nanowires Shelled with NiFe Layered Double Hydroxide Nanosheets as Bifunctional Electrocatalysts for Overall Water Splitting. Energy & Environmental Science 2017, 10, 1820-1827.
171. Gao, X.; Long, X.; Yu, H.; Pan, X.; Yi, Z., Ni Nanoparticles Decorated Nife Layered Double Hydroxide as Bifunctional Electrochemical Catalyst. J. Electrochem. Soc. 2017, 164, H307-H310.
172. Taei, M.; Havakeshian, E.; Hasheminasab, F., A Gold Nanodendrite-Decorated Layered Double Hydroxide as a Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reactions in Alkaline Media. RSC Advances 2017, 7, 47049-47055.
173. Zhao, S.; Jin, R.; Abroshan, H.; Zeng, C.; Zhang, H.; House, S. D.; Gottlieb, E.; Kim, H. J.; Yang, J. C.; Jin, R., Gold Nanoclusters Promote Electrocatalytic Water Oxidation at the Nanocluster/CoSe2 Interface. J. Am. Chem. Soc. 2017, 139, 1077-1080.
174. Haojie, Z.; Xiaopeng, L.; Angelika, H.; Volker, N.; Chao, L.; Sara, A.; L., S. S.; Wouter, M. A.; B., W. R., Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on Nicop Nanowires for Highly Efficient and Stable Overall Water Splitting. Adv. Funct. Mater. 2018, 28, 1706847.
175. Feng, J.-X.; Xu, H.; Dong, Y.-T.; Ye, S.-H.; Tong, Y.-X.; Li, G.-R., FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie International Edition 2016, 55, 3694-3698.
176. Tauster, S. J.; Fung, S. C.; Garten, R. L., Strong Metal-Support Interactions. Group 8 Noble Metals Supported on Titanium Dioxide. J. Am. Chem. Soc. 1978, 100, 170-175.
177. Pan, C.-J.; Tsai, M.-C.; Su, W.-N.; Rick, J.; Akalework, N. G.; Agegnehu, A. K.; Cheng, S.-Y.; Hwang, B.-J., Tuning/Exploiting Strong Metal-Support Interaction (SmSI) in Heterogeneous Catalysis. J. Taiwan Inst. Chem. Eng. 2017, 74, 154-186.
178. Andersson, S.; Collén, B.; Kuylenstierna, U.; Magnéli, A.; Pestmalis, H.; Åsbrink, S., Phase Analysis Studies on the Titanium-Oxygen System, 1957; Vol. 11, p 1641-1652.
179. Smith, J. R.; Walsh, F. C.; Clarke, R. L., Electrodes Based on Magnéli Phase Titanium Oxides: The Properties and Applications of Ebonex® Materials. J. Appl. Electrochem. 1998, 28, 1021-1033.
180. Han, W.-Q.; Zhang, Y., Magnéli Phases TinO2n−1 Nanowires: Formation, Optical, and Transport Properties. Appl. Phys. Lett. 2008, 92, 203117.
181. Han, W.-Q.; Wang, X.-L., Carbon-Coated Magnéli-Phase TinO2n−1 Nanobelts as Anodes for Li-Ion Batteries and Hybrid Electrochemical Cells. Appl. Phys. Lett. 2010, 97, 243104.
182. Bartholomew, R. F.; Frankl, D. R., Electrical Properties of Some Titanium Oxides. Physical Review 1969, 187, 828-833.
183. Senevirathne, K.; Hui, R.; Campbell, S.; Ye, S.; Zhang, J., Electrocatalytic Activity and Durability of Pt/NbO2 and Pt/Ti4O7 Nanofibers for PEM Fuel Cell Oxygen Reduction Reaction. Electrochim. Acta 2012, 59, 538-547.
184. Lee, S.; Lee, G.-H.; Kim, J.-C.; Kim, D.-W., Magnéli-Phase Ti4O7 Nanosphere Electrocatalyst Support for Carbon-Free Oxygen Electrodes in Lithium-Oxygen Batteries. ACS Catalysis 2018, 8, 2601-2610.
185. Ioroi, T.; Siroma, Z.; Fujiwara, N.; Yamazaki, S.-i.; Yasuda, K., Sub-Stoichiometric Titanium Oxide-Supported Platinum Electrocatalyst for Polymer Electrolyte Fuel Cells. Electrochem. Commun. 2005, 7, 183-188.
186. Ioroi, T.; Senoh, H.; Yamazaki, S.-i.; Siroma, Z.; Fujiwara, N.; Yasuda, K., Stability of Corrosion-Resistant Magnéli-Phase Ti4O7 -Supported PEMFC Catalysts at High Potentials. J. Electrochem. Soc. 2008, 155, B321-B326.
187. Li, X.; Zhu, A. L.; Qu, W.; Wang, H.; Hui, R.; Zhang, L.; Zhang, J., Magneli Phase Ti4o7 Electrode for Oxygen Reduction Reaction and Its Implication for Zinc-Air Rechargeable Batteries. Electrochim. Acta 2010, 55, 5891-5898.
188. Zhu, R.; Liu, Y.; Ye, J.; Zhang, X., Magnéli Phase Ti4O7 Powder from Carbothermal Reduction Method: Formation, Conductivity and Optical Properties. J. Mater. Sci.: Mater. Electron. 2013, 24, 4853-4856.
189. Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F., Surface-Enhanced Redox Chemistry of Polysulphides on a Metallic and Polar Host for Lithium-Sulphur Batteries. Nature Communications 2014, 5, 4759.
190. Kundu, D.; Black, R.; Berg, E. J.; Nazar, L. F., A Highly Active Nanostructured Metallic Oxide Cathode for Aprotic Li-O2 Batteries. Energy & Environmental Science 2015, 8, 1292-1298.
191. Luo, C.; Li, D.; Wu, W.; Zhang, Y.; Pan, C., Preparation of Porous Micro-Nano-Structure NiO/ZnO Heterojunction and Its Photocatalytic Property. RSC Advances 2014, 4, 3090-3095.
192. Kwong, W. L.; Lee, C. C.; Messinger, J., Transparent Nanoparticulate FeOOH Improves the Performance of a WO3 Photoanode in a Tandem Water-Splitting Device. The Journal of Physical Chemistry C 2016, 120, 10941-10950.
193. Jiang, J.; Zhang, C.; Ai, L., Hierarchical Iron Nickel Oxide Architectures Derived from Metal-Organic Frameworks as Efficient Electrocatalysts for Oxygen Evolution Reaction. Electrochim. Acta 2016, 208, 17-24.
194. Mora, M.; Jiménez-Sanchidrián, C.; Rafael Ruiz, J., Raman Spectroscopy Study of Layered-Double Hydroxides Containing Magnesium and Trivalent Metals. Mater. Lett. 2014, 120, 193-195.
195. Dubale, D. A.; Yi-Chen, W.; Wei-Nien, S.; Chun-Jern, P.; Meng-Che, T.; Hung-Ming, C.; Jyh-Fu, L.; Hwo-Shuenn, S.; Thanh, H. V. T.; Bing-Joe, H., In Situ Confined Synthesis of Ti4O7 Supported Platinum Electrocatalysts with Enhanced Activity and Stability for the Oxygen Reduction Reaction. ChemCatChem 2018, 10, 1155-1165.
196. Sepehr, M. N.; Al-Musawi, T. J.; Ghahramani, E.; Kazemian, H.; Zarrabi, M., Adsorption Performance of Magnesium/Aluminum Layered Double Hydroxide Nanoparticles for Metronidazole from Aqueous Solution. Arabian Journal of Chemistry 2017, 10, 611-623.
197. Wang, L.; Xu, X.; Evans, D. G.; Duan, X.; Li, D., Synthesis and Selective Ir Absorption Properties of Iminodiacetic-Acid Intercalated MgAl-Layered Double Hydroxide. J. Solid State Chem. 2010, 183, 1114-1119.
198. Nayak, S.; Mohapatra, L.; Parida, K., Visible Light-Driven Novel G-C3N4/NiFe-LDH Composite Photocatalyst with Enhanced Photocatalytic Activity Towards Water Oxidation and Reduction Reaction. Journal of Materials Chemistry A 2015, 3, 18622-18635.
199. Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.; Ramezanzadeh, B.; Farashi, S., Fabrication and Characterization of PO43− Intercalated Zn-Al- Layered Double Hydroxide Nanocontainer. J. Electrochem. Soc. 2016, 163, C495-C505.
200. Zhang, Y.; Jiang, H.; Li, G.; Zhang, M., Controlled Synthesis of Highly Dispersed and Nano-Sized Ru Catalysts Supported on Carbonaceous Materials Via Supercritical Fluid Deposition. RSC Advances 2016, 6, 16851-16858.
201. Yamaguchi, K.; Koike, T.; Kim, J. W.; Ogasawara, Y.; Mizuno, N., Highly Dispersed Ruthenium Hydroxide Supported on Titanium Oxide Effective for Liquid-Phase Hydrogen-Transfer Reactions. Chemistry – A European Journal 2008, 14, 11480-11487.
202. Wu, S.; Chen, L.; Yin, B.; Li, Y., "Click" Post-Functionalization of a Metal-Organic Framework for Engineering Active Single-Site Heterogeneous Ru(III) Catalysts. Chem. Commun. (Cambridge, U. K.) 2015, 51, 9884-9887.
203. Wang, G.; Xiao, L.; Huang, B.; Ren, Z.; Tang, X.; Zhuang, L.; Lu, J., AuCu Intermetallic Nanoparticles: Surfactant-Free Synthesis and Novel Electrochemistry. J. Mater. Chem. 2012, 22, 15769-15774.
204. Axmann, P.; Glemser, O., Nickel Hydroxide as a Matrix for Unusual Valencies: The Electrochemical Behaviour of Metal(III)-Ion-Substituted Nickel Hydroxides of the Pyroaurite Type. J. Alloys Compd. 1997, 246, 232-241.
205. Wang, D.; Zhou, J.; Hu, Y.; Yang, J.; Han, N.; Li, Y.; Sham, T.-K., In Situ X-Ray Absorption near-Edge Structure Study of Advanced NiFe(OH)X Electrocatalyst on Carbon Paper for Water Oxidation. The Journal of Physical Chemistry C 2015, 119, 19573-19583.
206. Chang, Z.; Zhao, N.; Liu, J.; Li, F.; Evans, D. G.; Duan, X.; Forano, C.; de Roy, M., Cu–Ce–O Mixed Oxides from Ce-Containing Layered Double Hydroxide Precursors: Controllable Preparation and Catalytic Performance. J. Solid State Chem. 2011, 184, 3232-3239.
207. Liu, Q.; Jin, J.; Zhang, J., NiCo2S4@Graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Appl. Mater. Interfaces 2013, 5, 5002-5008.
208. Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S.; Boettcher, S. W., Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)Hydroxides: Activity Trends and Design Principles. Chem. Mater. 2015, 27, 7549-7558.
209. Bates, M. K.; Jia, Q.; Doan, H.; Liang, W.; Mukerjee, S., Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catalysis 2016, 6, 155-161.
210. Lewerenz, H.-J., et al., Operando Analyses of Solar Fuels Light Absorbers and Catalysts. Electrochim. Acta 2016, 211, 711-719.
211. Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G., Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst. J. Am. Chem. Soc. 2012, 134, 6801-6809.
212. Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T., Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C 2015, 119, 7243-7254.
213. Chen, J. Y. C.; Dang, L.; Liang, H.; Bi, W.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S., Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090-15093.
214. Ling, T., et al., Engineering Surface Atomic Structure of Single-Crystal Cobalt (II) Oxide Nanorods for Superior Electrocatalysis. Nat Commun 2016, 7, 12876.
215. Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L., Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angew. Chem. 2016, 128, 5363-5367.
216. Liu, Y., et al., Low Overpotential in Vacancy-Rich Ultrathin CoSe2 Nanosheets for Water Oxidation. J. Am. Chem. Soc. 2014, 136, 15670-15675.
217. Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J., Rapid Room-Temperature Synthesis of Nanocrystalline Spinels as Oxygen Reduction and Evolution Electrocatalysts. 2010, 3, 79.
218. Nam, K. W.; Kim, S.; Yang, E.; Jung, Y.; Levi, E.; Aurbach, D.; Choi, J. W., Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries. Chem. Mater. 2015, 27, 3721-3725.
219. Chang, Z.; Wu, C.; Song, S.; Kuang, Y.; Lei, X.; Wang, L.; Sun, X., Synthesis Mechanism Study of Layered Double Hydroxides Based on Nanoseparation. Inorg. Chem. 2013, 52, 8694-8698.
220. Song, T.-B.; Chen, Y.; Chung, C.-H.; Yang, Y.; Bob, B.; Duan, H.-S.; Li, G.; Tu, K.-N.; Huang, Y.; Yang, Y., Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts. ACS Nano 2014, 8, 2804-2811.
221. Niclas, S. M., et al., Evaluating Arbitrary Strain Configurations and Doping in Graphene with Raman Spectroscopy. 2D Materials 2018, 5, 015016.
222. Zhang, Y.; Wang, L.; Zou, L.; Xue, D., Crystallization Behaviors of Hexagonal Nanoplatelet MgAl–Co3 Layered Double Hydroxide. J. Cryst. Growth 2010, 312, 3367-3372.
223. Guo, S.; Evans, D. G.; Li, D., Preparation of C.I. Pigment 52:1 Anion-Pillared Layered Double Hydroxide and the Thermo- and Photostability of the Resulting Intercalated Material. J. Phys. Chem. Solids 2006, 67, 1002-1006.
224. de Groot, F., High-Resolution X-Ray Emission and X-Ray Absorption Spectroscopy. Chem. Rev. (Washington, DC, U. S.) 2001, 101, 1779-1808.
225. Shuqian, W.; Jianwei, N.; Shihe, Y.; Lin, G., Synthesis of Amorphous Ni−Zn Double Hydroxide Nanocages with Excellent Electrocatalytic Activity toward Oxygen Evolution Reaction. ChemNanoMat 2015, 1, 324-330.
226. Wang, S.; Nai, J.; Yang, S.; Guo, L., Synthesis of Amorphous Ni−Zn Double Hydroxide Nanocages with Excellent Electrocatalytic Activity toward Oxygen Evolution Reaction. ChemNanoMat 2015, 1, 324-330.
227. Pandya, K. I.; O'Grady, W. E.; Corrigan, D. A.; McBreen, J.; Hoffman, R. W., Extended X-Ray Absorption Fine Structure Investigations of Nickel Hydroxides. The Journal of Physical Chemistry 1990, 94, 21-26.
228. Liu, R.; Wang, Y.; Liu, D.; Zou, Y.; Wang, S., Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Adv. Mater. 2017, 29, 1701546-n/a.
229. Cheng, F.; Zhang, T.; Zhang, Y.; Du, J.; Han, X.; Chen, J., Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies. Angewandte Chemie International Edition 2013, 52, 2474-2477.
230. Zhu, J.; Ren, Z.; Du, S.; Xie, Y.; Wu, J.; Meng, H.; Xue, Y.; Fu, H., Co-Vacancy-Rich Co1–X S Nanosheets Anchored on Rgo for High-Efficiency Oxygen Evolution. Nano Research 2017, 10, 1819-1831.
231. Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S., A Strongly Coupled Graphene and Feni Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction. Angewandte Chemie International Edition 2014, 53, 7584-7588.
232. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S., Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.
233. Zhu, K.; Liu, H.; Li, M.; Li, X.; Wang, J.; Zhu, X.; Yang, W., Atomic-Scale Topochemical Preparation of Crystalline Fe3+-Doped β-Ni(OH)2 for an Ultrahigh-Rate Oxygen Evolution Reaction. Journal of Materials Chemistry A 2017, 5, 7753-7758.
234. Li, Y.-F.; Selloni, A., Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and Fe-Doped Niox. ACS Catalysis 2014, 4, 1148-1153.
235. Oliver-Tolentino, M. A.; Vázquez-Samperio, J.; Manzo-Robledo, A.; González-Huerta, R. d. G.; Flores-Moreno, J. L.; Ramírez-Rosales, D.; Guzmán-Vargas, A., An Approach to Understanding the Electrocatalytic Activity Enhancement by Superexchange Interaction toward Oer in Alkaline Media of Ni–Fe LDH. The Journal of Physical Chemistry C 2014, 118, 22432-22438.
236. Wang, H.-F.; Tang, C.; Zhang, Q., Towards Superior Oxygen Evolution through Graphene Barriers between Metal Substrates and Hydroxide Catalysts. Journal of Materials Chemistry A 2015, 3, 16183-16189.

QR CODE