簡易檢索 / 詳目顯示

研究生: 林毅桐
Yi-tung Lin
論文名稱: 考量暫態溫升模型之不斷電系統隔離變壓器最佳化設計
Optimal Design of UPS Isolation Transformer Considering Transient Thermal Model
指導教授: 張宏展
Hong-Chan Chang
口試委員: 吳瑞南
Ruay-Nan Wu
郭政謙
Cheng-Chien Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 86
中文關鍵詞: 最佳化設計基因演算法隔離變壓器暫態溫升模型
外文關鍵詞: optimal design, genetic algorithm (GA), isolation transformer, transient thermal model
相關次數: 點閱:272下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前變壓器設計對於溫升方面,多半採用穩態溫升模型進行估算,惟針對不斷電系統隔離變壓器之應用,需規範特定時間點之暫態溫升限制,以符合實際需求。有鑑於此,本文針對不斷電系統隔離變壓器,首先建立具有暫態溫升之變壓器數值模型,模擬並分析與實測數據上的誤差度,據以提昇數值模型估測變壓器特性之準確度。其次,利用基因演算法具有求得全域最佳解與免於陷入局部最佳解的特性,結合上述數值模型進行最小化成本之最佳化設計。考量因素包含電氣特性、穩態溫升與暫態溫升等限制條件。最後,本研究以實際一具80kVA不斷電系統隔離變壓器為例,進行不同效率限制之最佳化設計,模擬結果顯示藉由改良製造廠商之原始設計,確可達到成本最小化之目的。


    At present, the design of transformer mostly used steady-state thermal model instead of transient thermal model to estimate temperature rise. For the particular application of isolated transformer in uninterruptible power system (UPS), the transient thermal constraint at specific time points needs to be regulated to meet the actual requirement. In view of this, this thesis is mainly concerned with the optimal design of UPS isolated transformer considering transient thermal constraint. First, a numerical transformer model taking transient thermal constraints into consideration is presented. The error between the actual measurement data with simulation results is analyzed and discussed to improve the estimation accuracy of the numerical transformer model. Then, incorporating with the aforementioned numerical model, the genetic algorithm (GA) is applied to the optimal design of UPS isolation transformer with minimum cost due to its excellent capability of obtaining the global optimal solution with higher probability and preventing form getting stuck in local optimum. The practical constraints to be considered include electrical characteristics, and the transient and steady-state temperature limits. Finally, taking an 80kVA UPS isolated transformer as an example, an optimal design with different efficiency restrictions has been conducted. Simulation results form the study show that the original design form the manufacturing company has been improved and the minimum cost can be achieved.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究步驟 3 1.3 章節概要 5 第二章 變壓器與熱傳遞之原理簡介 6 2.1 變壓器原理與特性 6 2.1.1 變壓器等效電路 6 2.1.2 繞組漏電感 8 2.1.3 諧波效應 12 2.2 熱傳遞原理 17 2.3 暫態溫升 21 2.3.1 熱阻抗 22 2.3.2 熱容量 24 2.3.3 暫態溫升模型 24 2.4 不同散熱形式之熱對流係數 26 2.4.1 無因次表示法與邊界層條件 26 2.4.2 強制對流 27 2.4.3 自然對流 28 第三章 變壓器數值模型之建立 30 3.1 目標變壓器規格簡介 30 3.2 數值模型建立 34 3.3 幾何結構關係式 37 3.3.1 幾何結構變數計算 37 3.3.2 成本與電氣特性計算 39 3.4 負載條件 43 3.4.1 IEC 62040-1建議之負載電路架構 44 3.4.2 負載電路模擬與損失增量計算 45 3.5 暫態溫升模型 49 3.5.1 溫升模型參數計算 49 3.5.2 暫態溫升模型 53 3.6 模擬與結果分析 54 3.6.1 廠內模擬與結果分析 54 3.6.2 機箱模擬與結果分析 55 3.7 本章結論 60 第四章 不斷電系統隔離變壓器之最佳化設計 61 4.1 基因演算法 61 4.1.1 基因演算法基本工作原理 62 4.1.2 基因演算法與其他方法比較 65 4.2 目標函數 65 4.3 限制條件 66 4.3.1 幾何結構限制條件 66 4.3.2 電氣特性限制條件 67 4.4 完整問題描述 69 4.5 求解過程 70 4.6 實例應用 72 4.6.1 變壓器規格與模擬條件 72 4.6.2 目標函數的限制條件 72 4.6.3 交換率與突變率設定 73 4.6.4 最佳化結果與分析 73 4.7 本章結論 78 第五章 結論與未來展望 79 5.1 結論 79 5.2 未來研究方向 79 參考文獻 81 作者簡述 86

    [1] E. I. Amoiralis, M. A. Tsili, and A. G. Kladas, “Transformer Design and Optimization: A Literature Survey,” IEEE Transactions on Power Delivery, vol. 24, no. 4, pp. 1999-2024, 2009.
    [2] 鄭至焜,「應用非對稱線圈結構降低變壓器湧入電流之研究」,博士論文,國立成功大學電機工程研究所,2004年。
    [3] B. Cougo, T. Meynard, F. Forest et al., “Winding position in power transformers to reduce copper losses: non-sinusoidal currents,” Energy Conversion Congress and Exposition, 2009, pp. 1010-1016.
    [4] S. Charap, and F. Judd, “A core loss model for laminated transformers,” IEEE Transations on Magnetics, vol. 10, no. 3, pp. 678-681, 1974.
    [5] A. Rubaai, “Computer aided instruction of power transformer design in the undergraduate power engineering class,” IEEE Transations on Power Systems, vol. 9, no. 3, pp. 1174-1181, 1994.
    [6] F. Shahzad, and M. H. Shwehdi, “Human-computer interaction of single/three phase transformer design and performance,” Industrial and Commercial Power Systems Technical Conference, 1997, pp. 193-196.
    [7] H. Li, L. Han, B. He et al., “Application research based on improved genetic algorithm for optimum design of power transformers,” The Fifth International Conference on Electrical Machines and Systems, 2001, vol.1, pp. 242-245.
    [8] T. Phophongviwat, and C. Chat-uthai, “Minimum Cost Design of Small Low-Loss Transformers,” IEEE conference on TENCON, 2005, pp. 1-5.
    [9] S. Elia, G. Fabbri, E. Nistico et al., “Design of cast-resin distribution transformers by means of genetic algorithms,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006, pp. 1473-1477.
    [10] S. Padma, R. Bhuvaneswari, and S. Subramanian, “Optimal Design of Power Transformer Using Simulated Annealing Technique.” IEEE International Conference on Industrial Technology, 2006, pp. 1015-1019.
    [11] C. Versele, O. Deblecker, and J. Lobry, “Multiobjective optimal design of high frequency transformers using genetic algorithm,” European Conference on Power Electronics and Applications, 2009, pp. 1-10.
    [12] “Power Transformer - Part 11:Dry-type transformers,” IEC 60076-11, 2004.
    [13] “Uninterruptible power systems (UPS) - Part 1:General and safety requirements for UPS,” IEC 62040-1, 2008.
    [14] S. J. Chapman, Electric machinery fundamentals, 4th ed, New York: McGraw-Hill Higher Education, 2005.
    [15] H. Saadat, Power system analysis, 2nd ed, Boston: McGraw-Hill, 2004.
    [16] W. H. Hayt, and J. A. Buck, Engineering electromagnetics, 7th ed, Boston: McGraw-Hill Higher Education, 2006.
    [17] M. J. Heathcote, and D. P. Franklin, The J & P transformer book : a practical technology of the power transformer, 12th ed, Boston: Newnes, 1998.
    [18] A. Kats, G. Ivensky, and S. Ben-Yaakov, “Application of integrated magnetics in resonant converters,” Applied Power Electronics Conference and Exposition, 1997, vol. 2, pp. 925-930.
    [19] W. M. Flanagan, Handbook of transformer applications, New York: McGraw-Hill, 1986.
    [20] 林戊添,「應用非線性負載交錯頻率導納矩陣於電力系統諧波分析之研究」,碩士論文,國立台灣科技大學電機工程研究所,1999年。
    [21] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics : converters, applications, and design, 3rd ed, New York: John Wiley & Sons, 2003.
    [22] C. W. T. McLyman, Transformer and inductor design handbook, 3rd ed, New York: Marcel Dekker, 2004.
    [23] W. G. Hurley, W. H. Wolfle, and J. G. Breslin, “Optimized transformer design: inclusive of high-frequency effects,” IEEE Transations on Power Electronics, vol. 13, no. 4, pp. 651-659, 1998.
    [24] W. G. Hurley, E. Gath, and J. G. Breslin, “Optimizing the AC resistance of multilayer transformer windings with arbitrary current waveforms,” IEEE Transations on Power Electronics, vol. 15, no. 2, pp. 369-376, 2000.
    [25] F. P. Incropera, and D. P. DeWitt, Fundamentals of heat and mass transfer, 5th ed, New York: John Wiley & Sons, 2002.
    [26] “IEEE Guide for Loading Mineral-Oil-Immersed Transformers,” IEEE Std C57.91, 1995.
    [27] G. Swift, T. S. Molinski, and W. Lehn, “A fundamental approach to transformer thermal modeling. I. Theory and equivalent circuit,” IEEE Transations on Power Delivery, vol. 16, no. 2, pp. 171-175, 2001.
    [28] G. Swift, T. S. Molinski, R. Bray et al., “A fundamental approach to transformer thermal modeling. II. Field verification,” IEEE Transations on Power Delivery, vol. 16, no. 2, pp. 176-180, 2001.
    [29] D. Susa, M. Lehtonen, and H. Nordman, “Dynamic thermal modelling of power transformers,” IEEE Transations on Power Delivery, vol. 20, no. 1, pp. 197-204, 2005.
    [30] D. Susa, M. Lehtonen, and H. Nordman, “Dynamic thermal modeling of distribution transformers,” IEEE Transations on Power Delivery, vol. 20, no. 3, pp. 1919-1929, 2005.
    [31] G. R. Kamath, “An Electrical Circuit based 3-D Steady State Thermal Model of a Fan Cooled 60 Hz, 20 kW 3-Phase Plasma Cutting Power Supply Transformer,” Industry Applications Conference, 2007, pp. 1773-1780.
    [32] G. R. Kamath, “An electrical circuit based 3-D thermal model of a fan cooled 600μH, 80A inductor for a plasma cutting power supply,” Applied Power Electronics Conference and Exposition, 2008, pp. 402-408.
    [33] I. Villar, U. Viscarret, I. Etxeberria-Otadui et al., “Transient thermal model of a medium frequency power transformer,” IEEE Conference on Industrial Electronics, 2008, pp. 1033-1038.
    [34] R. A. Jabr, “Application of geometric programming to transformer design,” IEEE Transations on Magnetics, vol. 41, no. 11, pp. 4261-4269, 2005.
    [35] “Power Transformer - Part 5:Ability to withstand short circuit,” IEC 60076-5, 2006.
    [36] A. Elmoudi, “Thermal modeling and simulation of transformers,” Power & Energy Society General Meeting, 2009, pp. 1-4.
    [37] 郭政謙,「應用多目標規劃法之配電自動化決策軟體」,博士論文,國立台灣科技大學電機工程研究所,1998年。
    [38] 成政田,「配電系統各別相負載計算技巧及其應用」,博士論文,國立台灣科技大學電機工程研究所,1999年。
    [39] 廖柏翔,「考慮溫室氣體減排與獨立發電業參與之最佳發電擴建規劃策略」,碩士論文,國立中山大學電機工程研究所,1999年。
    [40] E. I. Amoiralis, P. S. Georgilakis, M. A. Tsili et al., “Global Transformer Optimization Method Using Evolutionary Design and Numerical Field Computation,” IEEE Transations on Magnetics, vol. 45, no. 3, pp. 1720-1723, 2009.

    QR CODE