簡易檢索 / 詳目顯示

研究生: 路承達
Chen-Ta Lu
論文名稱: 無轉軸偵測元件單相風扇驅動系統及其積體電路晶片研製
Implementation of a Sensorless Single-phase Fan Motor Drive System and Its Integrated-Circuit Chip Design
指導教授: 劉添華
Tian-Hau Liu
口試委員: 許源浴
Yuan-Yih Hsu
劉昌煥
Chang-huan Liu
林法正
Faa-Jeng Lin
徐國鎧
Kuo-Kai Shyu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 156
中文關鍵詞: 無轉軸偵測元件單相風扇電動機數位訊號處理器
外文關鍵詞: sensorless, single-phase fan motor, digital signal processor
相關次數: 點閱:171下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討無轉軸偵測元件單相風扇驅動系統及其積體電路晶片的研製,並提出兩種不同的驅動方式。文中,首先分析單相風扇電動機之結構、原理及數學模式。然後探討驅動方法,採用數位訊號處理器晶片TMS320LF2407A作為控制器,以簡化驅動系統的硬體電路,並提出兩種控制方法。方法一,利用外部的類比/數位轉換器來讀取電壓訊號,判斷反電動勢零交越點,作為換相的依據,估測電動機轉速,完成閉迴路控速系統。方法二,探討變化輸入電壓並調整輸入頻率以便控制轉速。本文針對靜止重新啟動以及初始位置不正確,導致電動機不正常反轉的問題,提出因應策略並加以改善。
    為了縮小驅動系統的體積,本文利用Altera公司生產的CycloneⅡ EP2C20F484C8場效可程式邏輯閘陣列晶片,取代數位訊號處理器。最後,進一步以ASIC技術,整合類比與數位電路設計,完成一個積體電路,達成所需的驅動及控制。模擬與實測證明本文所提方法的可行性及正確性。


    This thesis proposes the implementation of a sensorless single-phase fan- motor drive system and its relative integrated circuit design. Two different drive methods are proposed here. First, the structure, principle, and mathematical model of the single-phase fan-motor are introduced. Next, the implemented drive system is discussed. A digital signal processor, TMS320LF2407A, is used as the control center to reduce the complexity of the hardware circuit. In the proposed method 1, an external A/D converter is used to convert the analog signal into digital signal, and then to determine the zero crossing of the back emf. The zero crossing can be used to determine the phase-commutation time and the rotor speed, and then achieve a closed-loop control system. Next, in the proposed method 2, the variable voltage and frequency method, is proposed to control the speed of the motor. Some strategies are used to slove the restarting problem and the initial position problem.
    After that, a field programmable gate array, CycloneⅡ EP2C20F484C8, made by Altera company, is used to replace the digital signal processor. Finally, an integrated circuit is developed by combining the analog circuits and digital circuits.The integrated circuit uses the application specific integrated circuit (ASIC) technique. Finally, some simulated results and experimental results are provided to validate the feasibility and correctness of the proposed methods

    中文摘要 I 英文摘要 II 目 錄 III 圖目錄 VII 表目錄 XII 符號說明 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 目的 5 1.4 大綱 6 第二章 單相直流無刷電動機 7 2.1 簡介 7 2.2 單相直流無刷電動機結構 9 2.2.1 內轉子型 9 2.2.2 外轉子型 9 2.2.3 扁平轉子型 10 2.3 單相直流無刷電動機數學模式 15 2.4 單相直流無刷電動機換相原理 17 第三章 單相直流無刷電動機驅動系統 20 3.1 簡介 20 3.2 速度控制器 24 3.3 轉速估測與換相 25 3.4 靜止啟動方法 27 3.5 脈波寬度調變 28 第四章 轉軸角度估測方法與閉迴路驅動系統 30 4.1 簡介 30 4.2 基本原理 30 4.2.1 反電動勢偵測方法 31 4.2.2 功率開關關閉時間計算 32 4.2.3 延遲器設計 33 4-3 轉速估測與換相 35 4-4 靜止狀態啟動 36 4.4.1 固定斜率上升方式 37 4.4.2 電流脈波方式 39 4.5 定位 42 4.5.1 偵測電流斜率方式 42 4.5.2 初始磁極定位方式 44 4-6 脈波寬度調變驅動架構(方法一) 45 4.7 電壓控制驅動架構(方法二) 46 4-8 保護策略 47 4.8.1 鎖死保護與自我重新啟動 47 4.8.2 過熱保護 47 4.8.3 低電壓重置 48 第五章 系統研製 49 5.1 簡介 49 5.2 硬體電路製作 50 5.2.1 變頻器及驅動級電路 50 5.2.2 霍爾感測電路 54 5.2.3 電流偵測電路 55 5.2.4 類比/數位轉換電路 58 5.2.5 電壓調變電路 60 5.3 數位訊號處理器架構 62 5.4 軟體程式設計 67 5.4.1 主程式 67 5.4.2 中斷服務程式 68 第六章 場效可程式邏輯閘陣列與系統單晶片電路設計 74 6.1 簡介 74 6.2 場效可程式邏輯閘陣列與積體電路介紹 74 6.3 Altera CycloneⅡ晶片介紹 78 6.4 軟體設計流程 79 6.5 場效可程式邏輯閘陣列晶片驅動架構 81 6.6 數位電路設計與模擬 82 6.6.1 週邊控制模組 82 6.6.2 定位與開迴路啟動模組 83 6.6.3 換相控制模組 84 6.6.4 輔助保護功能模組 85 6.7 類比電路設計與模擬 86 6.7.1 參考源電路 86 6.7.2 震盪器電路 87 6.7.3 比較器電路 89 6.7.4 溫度保護電路 90 6.7.5 低電壓重置電路 90 6.8 系統單晶片電路設計 92 第七章 積體電路設計與製作 93 7.1 簡介 93 7.2 設計方法與種類 93 7.3 風扇驅動晶片的設計流程 94 第八章 實測 106 8.1 簡介 106 8.2 數位訊號處理器驅動架構實測結果 106 8.3 場效可程式邏輯閘陣列驅動架構實測結果 116 8.4 積體電路晶片驗證結果 121 第九章 結論及建議 130 參考文獻 131 作者簡介 138

    [1]L. Sun, Q. Feng, and J. Shang, “Drive of single-phase brushless DC motors based on torque analysis,” IEEE Transactions on Magnetics, vol. 43, no. 1, pp. 46-50, January 2007.
    [2]D. R. Huang, T. F. Ying, S. J. Wang, C. M. Zhou, Y. K. Lin, K. W. Su, and C. I. Hsu, “Cogging torque reduction of a single-phase brushless DC motor,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp. 2075-2077, July 1998.
    [3]B. I. Kwon, B. Y. Yang, S. C. Park, and Y. S. Jin, “Novel topology of unequal air gap in a single-phase brushless DC motor,” IEEE Transactions on Magnetics, vol. 37, no. 5, pp. 3723-3726, September 2001.
    [4]W. Jin, W. Wang, L. Wu, Z. Wu, J. Ying, and Q. Yuan, “Novel single-phase BLDCM topology for low profile fan motor,” IEEE IECON-2005 , pp. 489-492, September 2005.
    [5]H. B. Ertan, B. Dag, and G. A. Capolino, “Calculation of parameters of single-phase PM motor for design optimization,” IEEE Transactions on Energy Conversion, vol. 20, no. 3, pp. 538-548, September 2005.
    [6]J. S. Kim and S. K. Sul, “New stand-still position detection strategy for PMSM drive without rational transducers,” IEEE IECON-1994, pp. 363-369, February 1994.
    [7]S. Ogasawara and H. Akagi, “An approach to position sensorless drive for brushless DC motors, ” IEEE Transactions on Industry Applications, vol. 27, pp. 928-933, September 1991.
    [8]S. Nagamori, “spindle motor drive method by use of reverse excitation,” I.E.E Transaction on Industry Applications , 1993.
    [9]G. H. Jang, J. H. Park, and J. H. Chang, “Position detection and start-up algorithm of a rotor in a sensorless BLDC motor utilising inductance variation,” IEE Proceedings Electric Power Applications , vol. 149, no. 2, pp. 137-142, March 2002.
    [10]C. H. Chen and M. Y. Cheng, “A new cost effective sensorless commutation method for brushless DC motors without phase shift circuit and neutral voltage,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 644-653, March 2007.
    [11]K. Y. Cheng and Y. Y. Tzou, “Design of a sensorless commutation IC for BLDC motors,” IEEE Transactions on Power Electronics, vol. 18, pp. 1365-1375, November 2003.
    [12]T. H. Kim and M. Ehsani, “Sensorless control of the BLDC motors from near-zero to high speeds,” IEEE Transactions on Power Electronics, vol. 19, no. 6 , pp. 1635-1645, November 2004.
    [13]H. P. Wang and Y. T. Liu, “Integrated design of speed-sensorless and adaptive speed controller for a brushless DC motor,” IEEE Transactions on Power Electronics, vol. 21, no. 2 , pp. 518-523, November 2006.
    [14]J. X. Shen and S. Iwasaki, “Sensorless control of ultrahigh-speed PM brushless motor using PLL and third harmonic back EMF,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2 , pp. 421-428, April 2006.
    [15]J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1734-1740, November/ December 2003.
    [16]Q. Jiang, C. Bi and R. Huang, “A new phase-delay-free method to detect back EMF zero-crossing points for sensorless control of spindle motors,” IEEE Transactions on Magnetics, vol. 41, no. 7, pp. 2287-2294, July 2005.
    [17]G. J. Su and J. W. McKeever, “Low-cost sensorless control of brushless DC motors with improved speed range,” IEEE Transactions on Power Electronics, vol. 19 , no. 2 , pp. 296-302, March 2004.
    [18]W. Wang, Z. Wu, W. Jin, and J. Ying, “Sensorless control technology for single phase BLDCM based on the winding time-sharing method,” IEEE IECON-2005, November 2005.
    [19]W. Wang, Z. Wu, W. Jin, and J. Ying, “Starting methods for hall-less single phase BLDC motor,” IEEE IECON- 2005, November 2005.
    [20]Y. S. Kung and M. H. Tsai, “FPGA-based speed control IC for PMSM drive with adaptive Fuzzy Control,” IEEE Transactions on Power Electronics, vol. 22, no. 6, pp. 2476-2486, November 2007.
    [21]F. J. Lin, C. K. Chang, and P. K. Huang, “FPGA-based adaptive backstepping sliding-mode control for linear induction motor drive,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1222-1231, July 2007.
    [22]C. M. Wang, S. J. Wang, S. K. Lin, and H. Y. Lin, “A novel twelve-step sensorless drive scheme for a brushless DC moto,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2555-2557, June 2007.
    [23]Y. S. Lai, F. S. Shyu, and Y. H. Chang, “Novel loss reduction pulsewidth modulation technique for brushless dc motor drives fed by MOSFET inverter,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1646-1652, November 2004.
    [24]SGS-Thomson, L6238 Sensorless Spindle Motor Controller, June 1993.
    [25]MicroLinear, ML4411 Sensorless Spindle Motor Controller, May 1997.
    [26]Toshiba, TB6520P PWM Type 3-Phase Full-Wave Sensorless Motor Controller, April 1999.
    [27]Sanyo, LV8800 For Notebook PC Fan Motor Driver, July 2007.
    [28]PAPST, Technotes, http://www.papst.de/english/home.html.
    [29]T. Nakahama, D. Biswas, K. Kawano, and F. Ishibashi, “Improved cooling performance of large motors using fans,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 324-331, June 2006.
    [30]M. Nonaka, “Motor Drivng Device” United State Patent US 6,731,086,2004
    [31]G. K. Dubey, Power Semiconductor controlled drives, Prentice-Hall International, Inc., 1985.
    [32]D. C. Hanselman, Brushless Permanent-Magnet Motor design, McGraw-Hill, Inc., 1994.
    [33]J. R. Hendershot and T. J. E. Miller, Design of Brushless Permanent-Magent Motor,Oxford University Press Inc., New York, 1994.
    [34]T. J. E. Miller, Brushless Permanent-magent and Relctance Motor Driver,Oxford University Press Inc., New York, 1993.
    [35]J. P. Johnson, M. Ehsani, and Y, Guzelgunler, “Review of sensorless methods for brushless DC,” IEEE IECON-1999, pp. 143-150, October 1999.
    [36]P. P. Acarnley and J. F. Watson, “Review of position-sensorless operation of brushless permanent-magnet machines,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 352-362, April 2006.
    [37]H. A. Toliyat, L. Hao, D. S. Shet, and T. A. Nondahl, “Position-sensorless control of surface-mount permanent-magnet AC (PMAC) motors at low speeds,” IEEE Transactions on Industrial Electronics , vol. 49, no. 1, pp. 157-164, February 2002.
    [38]S. Ogasawara and H. Akagi, “Implementation and position control performance of a position-sensorless IPM motor drive system based on magnetic saliency,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 806-812, July 1998.
    [39]T. Aihara, A. Toba, T. Yanase, A. Mashimo, and K. Endo, “Sensorless torque control of salient-pole synchronous motor at zero-speed operation,” IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 202-208, January 1999.
    [40]M. Tursini, R. Petrella, and F. Parasilit, “Initial rotor position estimation method for PM motors,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1630–1640, November 2003.
    [41]Sanyo, LB1964T Fan Motor Single-Phase Full-Wave Driver, October 1999.
    [42]CET, CEM4539 Dual Enhance Mode Field Effect Transistor (N and P Channel) DataSheet.
    [43]PC板安裝、精密量測用的超小型OEM交流電流感應器,CTL-Z系列,http://www.cpu.com.tw/kh/sensor/lem/6lz.pdf。
    [44]Spectrum Digital, eZdspTM LF2407A Technical Reference, 2003.
    [45]Texas Instruments, TMS320LF/LC240x DSP Controllers System and Peripherals Reference Guide, 2000.
    [46]Spectrum Digital, TMS320C2xx/C24x Code Composer User’s Guide, November 2000, http://www.ti.com/.
    [47]CIC, Altera Training Manual, July 2003.
    [48]CIC, Altera Training Manual-FPGA Design with Quartus II, July 2003.
    [49]Altera, CycloneⅡ Device Family Data Sheet sectionⅠ, May 2008.
    [50]C. H. Roth, Digital system design using VHDL, PWS Pub., 1998.
    [51]CIC, Full Custom IC Design Training Manual,2003.
    [52]J. Aronstein and T. K. Hare, “AC and DC electromigration failure of aluminum contact junctions,” IEEE Transactions on Components and Packaging Technologies, vol. 28, , no. 6, pp. 701-709, December 2005.
    [53]S. Gupta, J. C. Beckman, and S. L. Kosier,“Improved latch-up immunity in junction-isolated smart power ICs with unbiased guard ring,” IEEE Transactions on Electron Device, vol. 22, no. 12, pp. 600-602, December 2001.
    [54]A. Hokazono, S. Balasubramanian, K. Ishimaru, H. Ishiuchi, C. Hu, and T. J. Liu, “MOSFET hot-carrier reliability improvement by forward-body bias,” IEEE Transactions on Electron Device, vol. 27, no. 7, pp. 605-608, July 2006.
    [55]M. D. Ker and S. F. Hsu, “Component-level measurement for transient-induced latch-up in CMOS ICs under system-level ESD considerations,” IEEE Transactions on Device and Materials Reliability, vol. 6, no. 3, pp. 461-472, September 2006.
    [56]M. D. Ker and K. C. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits,” IEEE Transactions on Device and Materials Reliability, vol. 5, no. 2, pp. 235-249, June 2005.
    [57]M. D. Ker and K. H. Lin, “ESD protection design for I/O cells with embedded SCR structure as power-rail ESD clamp device in nanoscale CMOS technology,” IEEE Transactions on Solid-State Circuits, vol. 40, no. 11, pp. 2329-2338, November 2005.
    [58]G. Zhang, Z. Shao, and K. Zhou, “Threshold voltage model of short-channel FD-SOI MOSFETs with vertical gaussian profile,” IEEE Transactions on Electron Device, vol. 55, no. 3, pp. 803-809, March 2008.

    無法下載圖示 全文公開日期 2013/07/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE