簡易檢索 / 詳目顯示

研究生: 鄭丞凱
Cheng-Kai Jheng
論文名稱: 基於雲端監控及數據收集系統之電池診斷平台
Battery Diagnosis Platform Based on Cloud Monitoring and Data Collection System
指導教授: 林長華
Chang-Hua Lin
口試委員: 劉添華
Tian-Hua Liu
陳貽評
Yi-Ping Chen
劉華棟
Hwa-Dong Liu
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 147
中文關鍵詞: 鋰電池機器學習電量狀態健康狀態雲端監控
外文關鍵詞: Li-ion battery, machine learning, SOC, SOH, cloud monitoring
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文所建之雲端電池狀態診斷系統是基於中央管理單元(樹莓派)建立所提之雙層式可擴充架構,使其能夠擴充並連接各種可以收集電池數據之本地端系統,並依照該系統所上傳之數據,即可以對該電池或電池模組進行電量狀態(State of Charge, SOC)SOC、健康狀態(State of Health, SOH)SOH之估測方法,並將估測之結果顯示於雲端之人機介面當中。其次,本文所提之電池SOC/SOH估測方法,是利用神經網路模型機器學習的方法,以大量之電池測試數據先對神經網路模型進行訓練,因而建立電池參數與電池SOC、SOH之非線性關係,進而推估出電池之SOC、SOH狀態,且神經網路模型具備相當出色之泛化能力,並可以重新對模型進行訓練,對於未知數據之估測能力相當強大,因此,可以透過重新訓練或是增量學習輕易地擴展估測範圍,對於未知的數據也能解決其他因素的影響。再者,本文以雙向電能轉換器的架構提出一電池數據收集系統之架構,目前除了可以利用此數據收集系統進行電池數據之收集,也能透過此系統對待測電池以特定之電流型態進行抽載測試,以收集特定之電流抽載數據。此外,可以利用電池數據收集系統或擴充於本雲端下之數據BMS系統所收集之數據進行電池,或電池模組之電量狀態與健康狀態估測,亦可以由系統之人機介面顯示與進行相關控制。最後,以實際訓練之神經網路模型進行推論與實際值之比較,其實測之結果與預期相符。


    This thesis's cloud battery diagnosis system is based on a central management unit (raspberry pi), which establishes a scalable bilayer architecture. The central management unit enables the system to expand and connect to various local systems that can collect battery data. According to the data uploaded by the data collection system, the SOC and SOH of the battery and battery module can be estimated, and show the result on UI in the cloud. Secondly, the proposed SOC/SOH estimation method uses a neural network model, which is trained with a large amount of battery data and establishes the nonlinear relationship between battery parameters and SOC/SOH. Moreover, the generalization capability of the neural networks is excellent, and the neural network model can also be retrained. Therefore, the estimation range can be expanded easily through incremental learning.
    Moreover, this thesis proposes a battery collection system with a bidirectional converter. In addition to collecting data, the battery can also be tested with a specific current profile through the system. Finally, the battery data collected by the local system can be used to estimate the SOC/SOH. In this thesis, compare the inference result with the actual value, and the performance is in line with expectations.

    摘要 I Abstract III 致謝 IV 目錄 V 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.3 論文架構 5 第二章 鋰電池與電量估測法簡介 7 2.1 電池種類介紹 7 2.2 電池電量狀態及健康狀態 9 2.3 庫倫積分法 10 2.4 開路電壓法 12 2.5 結合開路電壓法與庫倫積分法之估測方法 14 2.6 卡爾曼濾波器 14 2.7 本文所提之電量與健康狀態估測方法 17 2.8 電池狀態估測方法之比較 18 第三章 雲端技術介紹 20 3.1 雲端系統架構 20 3.2 雲端設備介紹 22 3.3 資料庫介紹 24 3.3.1 NoSQL資料庫介紹 25 3.3.2 後端技術介紹 26 3.4 雲端分析技術 31 3.4.1 前饋神經網路介紹 31 3.4.2 RNN模型與其特性介紹 33 3.4.3 LSTM與GRU模型特性介紹 35 3.4.4 TCN模型與其特性介紹 37 3.4.5 模型之數據增量學習 41 3.5 MQTT通訊協議與數據傳輸格式介紹 43 3.6 數據之處理與模型輸入特徵介紹 46 3.6.1 數據收集之電流波形 46 3.6.2 數據前處理方式介紹 48 3.6.3 模型輸入特徵之挑選與比較 49 3.7 前端介面介紹 51 第四章 雲端技術應用於電池診斷平台 54 4.1 系統架構介紹 54 4.2 電池數據收集平台 57 4.2.1 雙向同步整流降升壓轉換器 58 4.2.2 啟動責任週期控制 59 4.2.3 雙向同步整流降升壓型轉換器工作模式 62 4.2.4 數位控制器之必要性 73 4.2.5 中央管理單元Raspberry Pi 78 4.2.6 數據收集系統之動作流程 80 4.3 Modbus通訊協議 84 4.3.1 Modbus之訊息結構與通訊架構 84 4.3.2 通訊之數據校驗程序 87 第五章 電池數據收集平台之系統規格與設計考量 89 5.1 電池數據收集之規格 89 5.1.1 數據收集平台取樣回授 89 5.1.2 電動載具電池模組之取樣與實測 91 5.2 雙向同步整流降升壓轉換器之規格與設計考量 93 5.2.1 儲能元件設計 95 5.3 電動機車電池模組之規格與設計考量 97 5.4 輔助電源之應用與說明 102 5.5 高速PWM之驅動電路設計 103 5.6 電流取樣電路之設計與實現 104 第六章 電池診斷平台之測試與實現 106 6.1 數據收集平台與三角波電流數據收集實測 106 6.2 電池診斷模型之實測 108 6.2.1 電池SOC/SOH模型推論的結果 109 6.2.2 電池SOC/SOH模型之增量學習實測 113 6.3 電池診斷平台之SOC/SOH估測 116 6.3.1 電池狀態估測系統實測 117 6.3.2 電池模組於電動載具之實測 122 第七章 結論與未來展望 125 7.1 結論 125 7.2 未來展望 126 參考文獻 127

    [1] Z. Omariba, L. Zhang, and D. Sun, " Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles, " IEEE Access, vol. 7, pp.129335-129352, 2019.
    [2] R. Xiong, F. Sun, X. Gong and H. He, “ Cell State-of-Charge Estimation for the Multi-cell Series-connected Battery Pack with Model bIas Correction Approach,” Journal of Power Sources, vol. 242, pp. 699-713, May. 2013.
    [3] A. T. Elsayed, C. R. Lashway and O. A. Mohammed, "Advanced Battery Management and Diagnostic System for Smart Grid Infrastructure," IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 897-905, March 2016.
    [4] Q. Yu, R. Xiong, C. Lin, W. Shen and J. Deng, "Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters," IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 8693-8701, Oct. 2017.
    [5] D. Andre, C. Appel, T. Soczka-Guth, D. Sauer, “Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries,” Journal of Power Sources, vol. 224, pp. 20-27, Oct. 2012.
    [6] M. A. Hannan, M. S. H. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations,”Renewable Sustain. Energy, vol. 78, pp. 834–854, Oct. 2017.
    [7] M. K. Hossain and S. M. R. Islam, "Battery Impedance Measurement Using Electrochemical Impedance Spectroscopy Board," 2017 2nd International Conference on Electrical & Electronic Engineering (ICEEE), Rajshahi, 2017, pp. 1-4.
    [8] P. A. Topan, M. N. Ramadan, G. Fathoni, A. I. Cahyadi and O. Wahyunggoro, "State of Charge (SOC) and State of Health (SOH) estimation on lithium polymer battery via Kalman filter," 2016 2nd International Conference on Science and Technology-Computer (ICST), 2016, pp. 93-96.
    [9] G. Wu, R. Lu, C. Zhu, and C. C. Chan, “State of charge estimation for NiMH Battery based on electromotive force method,” in Proc. IEEE Veh. Power Propulsion Conf., Harbin, China, 2008, pp. 1–5.
    [10] B. S. Bhangu, P. Bentley, D. A. Stone and C. M. Bingham, "Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles," IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 783-794, May 2005.
    [11] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs,” Journal of Power Sources, vol. 134, pp. 252–261, Aug. 2004.
    [12] C. Ma, Q. Wu, Y. Hou and J. Cai, "SOC Estimation of Lithium Battery Based on Fuzzy Kalman Filter Algorithm," 2020 35th Youth Academic Annual Conference of Chinese Association of Automation(YAC), 2020.
    [13] G. O. Sahinoglu, M. Pajovic, Z. Sahinoglu, Y. Wang, P. V. Orlik and T. Wada, "Battery state-of-charge estimation based on regular/recurrent Gaussian process regression,"IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4311-4321, May 2018.
    [14] C. Vidal, P. Malysz, P. Kollmeyer, and A. Emadi, "Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art," IEEE Access, vol. 8, pp.52796-52814, March 2020.
    [15] J.C. Álvarez Antón, P.J. García Nieto, F.J. de Cos Juez, F. Sánchez Lasheras, M. González Vega, et al, "Battery state-of-charge estimator using the SVM technique," Applied Mathematical Modelling, vol. 37, pp. 6244-6253, 2013.
    [16] G. Javid, M. Basset and D. O. Abdeslam, "Adaptive Online Gated Recurrent Unit for Lithium-Ion Battery SOC Estimation," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 2020, pp. 3583-3587.
    [17] S. Squartini, A. Hussain and F. Piazza, "Preprocessing based solution for the vanishing gradient problem in recurrent neural networks," Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03., May 2003.
    [18] Y. Bengio, P. Simard and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult",IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
    [19] S. Hochreiter and J. Schmidhuber, "Long short-term memory",Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    [20] S. Yang, X. Yu, Y. Zhou, "LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an Example," 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), June 2020.
    [21] H. Dai, G. Zhao, M. Lin, J. Wu and G. Zheng, "A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain,"IEEE Transactions on Industrial Electronics, vol. 66, no. 10, pp. 7706-7716, Oct. 2019.
    [22] J. Zhou, Z. He, M. Gao and Y. Liu, "Battery state of health estimation using the generalized regression neural network,"2015 8th International Congress on Image and Signal Processing (CISP), Shenyang, 2015, pp. 1396-1400.
    [23] D. H. Zhou, Z. Y. Li, J.L. Zhu, H. C. Zhang, L. Hou, "State of Health Monitoring and Remaining UsefulLife Prediction of Lithium-Ion Batteries Based on Temporal Convolutional Network," IEEE Access, vol. 8, pp.53307-53320, March 2020.
    [24] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles",” Journal of. Power Sources, vol. 226, pp. 272-288, Mar. 2013.
    [25] Y. Liu, J. Li, G. Zhang, B. Hua, N. Xiong, "State of Charge Estimation of Lithium-Ion Batteries Based on Temporal Convolutional Network and Transfer Learning," IEEE Access, vol. 9, pp.34177-34187, February 2021.
    [26] H. Chaoui, "State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks," IEEE Transactions on Vehicular Technology, vol. 66, no.10, pp.8773-8783, June 2017.
    [27] Sanyo/Panasonic, UR18650NSX Datasheet [Online].Available: https://is.gd/LJTqur
    [28] Q. Xu, J. Xiao, P. Wang, X. Pan, C. Wen, "A Decentralized Control Strategy for Autonomous Transient Power Sharing and State-of-Charge Recovery in Hybrid Energy Storage Systems," IEEE Transactions on Sustainable Energy, vol. 8, no. 4, pp. 1443-1452, Oct. 2017.
    [29] J. H. Aylor, A. Thieme, B. W. Johnso, "A battery state-of-charge indicator for electric wheelchairs," IEEE Transactions on Industrial Electronics, vol. 39, no. 5, pp. 398-409, Oct. 1992.
    [30] C. Weng, J. Sun and H. Peng “A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring,” Journal of Power Sources, vol. 258, pp.228-237, Jul, 2014.
    [31] 陳冠中,“具能量回收之可攜式在線電池診斷平台”,台灣科技大學電機工程研究所碩士論文,西元2019年七月。
    [32] F. Yang, Y. Xing, D. Wang, K.-L. Tsui, "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile", Appl. Energy, vol. 164, pp. 387-399, Feb. 2016.
    [33] F. Yang, D. Wang, Y. Xing, K.-L. Tsui, " Prognostics of Li(NiMnCo)O 2 -based lithium-ion batteries using a novel battery degradation model ", Microelectron. Rel., vol. 70, pp. 70-78, Mar. 2017.
    [34] C.C. Kung, S.H. Liu, “The State of Charge Estimation of Lithium-Ion Battery Based on Temperature-Compensation Method with Adaptive Extened Kalman Filter,“ 2018 IEEE International Conference on Systems, pp. 4144-4149, 2018
    [35] P. Mell, T. Grance. “The NIST Definition of Cloud Computing”. NIST.
    [36] Mell P., Grance T. “Effectively and Securely Using the Cloud Computing Paradigm”. NIST Information Technology Laboratory, 2010.
    [37] B. Daniel, M. Thomas, and W. Stefan “Platform as a Service (PaaS),” Business & Information Systems Engineering: Vol. 3: Iss. 6, 381-384., 2011
    [38] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, “A View of Cloud Computing”, Communications of the ACM, Vol. 53 No. 4, Pages 50-58, April 2010
    [39] E. Codds, “A relational model of data for large shared data banks,” 1970.
    [40] ”DB Engines Ranking Trend Popularity,”. [Online] Available: https://db-engines.com/en/ranking_trend
    [41] J. Szoplik, ‘‘Forecasting of natural gas consumption with artificial neural networks,’’ Energy, vol. 85, pp. 208–220, Jun. 2015.
    [42] A. Affanni, A. Bellini, C. Concari, G. Franceschini, E. Lorenzani, and C. Tassoni, “EV battery state of charge: Neural network based estimation,” Electric Machines and Drives Conference, vol. 2, pp. 684– 688, 2002.
    [43] H. X. Lu, Y. Lu, Z. F. Tang, S. J. Wang, “SOC Dynamic Power Management Using Artificial Neural Network”, The Sixth International Conference On Intelligent Systems Design and Applications (ISDA ’06), 2006
    [44] Anand. I; Mathur, B.L., “State of charge estimation of lead acid batteries using neural networks,” 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), pp. 596, 599, Mar. 20-21, 2013
    [45] S. J. Bai, J. Z. Kolter, V. Koltun, ‘‘An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling’’ arXiv preprint, arXiv:1803.01271.
    [46] H.-T. Lin, T.-J. Liang, and S.-M. Chen, “Estimation of battery state of health using probabilistic neural network,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 679–685, May 2013.
    [47] Graves, A., Mohamed, A. R., Hinton, G., ‘‘Speech recognition with deep recurrent neural networks.’’ 2013 IEEE international conference on speech and signal processing, pp. 6645-6649, 2013.
    [48] Wang, S., Jiang, J., ‘‘Learning natural language inference with LSTM.’’ arXiv preprint, arXiv:1512.08849, 2015.
    [49] Q. You, H. Jin, Z. Wang, C. Fang, J. Luo, ‘‘Image captioning with semantic attention.’’ The IEEE Conference on Computer Vision and Pattern Recognition, pp. 4651-4659, 2016.
    [50] W. W. Peterson and D. T. Brown, "Cyclic Codes for Error Detection," in Proceedings of the IRE, vol. 49, no. 1, pp. 228-235, Jan. 1961.

    無法下載圖示 全文公開日期 2032/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2120/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE