簡易檢索 / 詳目顯示

研究生: 許卉瑀
Hui-Yu Hsu
論文名稱: 在感知無線電隨意網路上利用傳染病模型分析資料傳遞之動態
Analysis of Information Delivery Dynamics in Cognitive Radio Ad Hoc Networks Using Epidemic Models
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 馮輝文
Huei-Wen Ferng
林春成
Chun-Cheng Lin
曾志成
Chih-Cheng Tseng
鄧德雋
Der-Jiunn Deng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 37
中文關鍵詞: 感知無線電隨意網路傳染病模型緩衝器佔用量
外文關鍵詞: cognitive radio ad hoc network, epidemic model, buffer occupancy
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去感知無線電的研究主要都在探討如何增加頻譜使用率,然而在主要使用者 及次要使用者之間的干擾控制也是十分重要。因在感知無線電隨意網路中,次要 使用者採用動態頻譜存取及功率調整的方式以確保主要使用者在不受次要使用者 干擾下能充分使用頻譜,但此種方式將會使干擾控制變得更為複雜且將不可避免 地增加次要使用者在通訊上的延遲。在感知無線電隨意網路下,為了確保主要系 統在運作時能有最佳的效能,我們提出了擴散型干擾感知機制,利用全域計時方 式及疫苗康復方式控制緩衝器佔用量的問題。而在我們提出的擴散型干擾感知康 復輔助機制下,我們使用宏觀的角度來探討整個系統並以傳染病模型及隨機幾何 來分析次要使用者的資料傳遞之動態。在我們的模擬結果中,顯示我們提出的模 型在感知無線電隨意網路下能夠有效地掌握複雜的動態資料傳遞之可靠性以及緩 衝器佔用量。因此,此篇論文能夠讓你詳盡地瞭解在感知無線電隨意網路中擴散 型康復輔助機制的分析。


    Over the past decade cognitive radio (CR) is introduced to increase spectrum efficiency, however it on the other hand burdens the interference control between unlicensed secondary users (SUs) and primary users (PUs). In CR ad hoc networks (CRAHNs), such considerations in interference control become more complicated, where SUs adopt dynamic spectrum access and power adjustment to ensure sufficient operation of PUs, and the inevitably increasing latency poses new challenges on reliability of end-to-end communications. To guarantee operations of primary systems while fully optimizing system performance in CRAHNs, this thesis proposes interference-aware flooding schemes exploiting global timeout and vaccine recovery schemes to control the heavy buffer occupancy induced by packet replications. The information delivery dynamics of SUs under the proposed interference-aware recovery-assisted flooding schemes is analyzed via epidemic models and stochastic geometry from a macroscopic view of the entire system. The simulation results show that our model can efficiently capture the complicated data delivery dynamics in CRAHN in terms of end-to-end transmission reliability and buffer occupancy. Consequently this thesis sheds new light on analysis of recovery-assisted flooding schemes in CRAHN.

    Abstract in Chinese.................................. i Abstract in English .................................. ii Contents........................................ iii List of Figures..................................... v 1 Introduction.................................... 1 2 Background and Related Works.......................... 4 2.1 Recovery Schemes ............................. 4 2.2 Epidemic Model............................... 4 2.3 Related Works................................ 5 3 System Model................................... 7 3.1 Network Model............................... 7 3.2 Channel Model ............................... 7 3.3 Flooding Scheme .............................. 8 3.4 Hybrid Recovery Scheme.......................... 8 3.5 Performance Metric............................. 9 4 Analysis of Interference at SU .......................... 10 4.1 Notation................................... 10 4.2 Outage Constraint of Primary Receiver Sensitivity . . . . . . . . . . . . . 11 4.3 Avoidance Region.............................. 12 5 Analysis of Interference-aware Information Dynamics . . . . . . . . . . . . . . 15 5.1 Static Flooding Scheme........................... 15 5.2 Mobile Flooding Scheme.......................... 18 6 Performance Evaluation.............................. 20 7 Conclusion..................................... 25 References....................................... 26

    [1] A. Goldsmith, S. A. Jafar, I. Marić, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios: An information theoretic perspective,” Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009.
    [2] Y.-C.Liang,K.-C.Chen,G.Y.Li,andP.Mahonen,“Cognitiveradionetworkingandcommunications: An overview,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3386–3407, Sept. 2011.
    [3] M. Youssef, M. Ibrahim, M. Abdelatif, L. Chen, and A. V. Vasilakos, “Routing metrics of cognitive radio networks: A survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 92–109, Jan. 2014.
    [4] H. Khalife, N. Malouch, and S. Fdida, “Multihop cognitive radio networks: to route or not to route,” IEEE Netw., vol. 23, no. 4, pp. 20–25, July/Aug. 2009.
    [5] P.De,Y.Liu,andS.K.Das,“Anepidemictheoreticframeworkforvulnerabilityanalysisofbroadcast protocols in wireless sensor networks,” IEEE Trans. Mobile Comput., vol. 8, no. 3, pp. 413–425, Mar. 2009.
    [6] Y. Song and J. Xie, “QB2IC - a QoS-based broadcast protocol under blind information for multihop cognitive radio ad hoc networks,” IEEE Trans. Veh. Technol., vol. 63, pp. 1453–1466, Mar. 2014.
    [7] Y.SongandJ.Xie,“BRACER:Adistributedbroadcastprotocolinmulti-hopcognitiveradioadhoc networks with collision avoidance,” IEEE Trans. Mobile Comput., vol. 14, pp. 509–524, Mar. 2015.
    [8] Z. J. Haas and T. Small, “A new networking model for biological applications of ad hoc sensor net- works,” IEEE/ACM Trans. Netw., vol. 14, no. 1, pp. 27–40, Feb. 2006.
    [9] E. Altman, A. P. Azad, T. Başar, and F. De Pellegrini, “Combined optimal control of activation and transmission in delay-tolerant networks,” IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 482–494, Apr. 2013.
    [10] C.S.DeAbreuandR.M.Salles,“ModelingmessagediffusioninepidemicalDTN,”AdHocNetworks, vol. 16, p. 197–209, 2014.
    [11] P.-Y. Chen, S.-M. Cheng, and K.-C. Chen, “Optimal control of epidemic information dissemination over networks,” IEEE Trans. on Cybern., vol. 44, no. 12, pp. 2316–2328, Dec. 2014.
    [12] J.Huang,S.Wang,X.Cheng,M.Liu,Z.Li,andB.Chen,“Mobility-assistedroutinginintermittently connected mobile cognitive radio networks,” IEEE Trans. Parallel Distrib. Syst., vol. 25, pp. 2956– 2968, Nov. 2014.
    [13] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Stochastic geometry and random graphs for the analysis and design of wireless networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1046, Sept. 2009.
    [14] Y.Song,J.Xie,andX.Wang,“Anovelunifiedanalyticalmodelforbroadcastprotocolsinmulti-hop cognitive radio ad hoc networks,” IEEE Trans. Mobile Comput., vol. 13, pp. 1653–1667, Aug. 2014.
    [15] M. Garetto and E. Leonardi, “Restricted mobility improves delay-throughput tradeoffs in mobile ad hoc networks,” IEEE Trans. Inf. Theory, vol. 56, pp. 5016–5029, Oct. 2010.
    [16] D. J. Daley and J. Gani, Epidemic Modelling: An Introduction. Cambridge University Press, 2001.
    [17] P.-Y.ChenandK.-C.Chen,“Informationepidemicsincomplexnetworkswithopportunisticlinksand
    dynamic topology,” in Proc. IEEE Globecom 2010, Dec. 2010.
    [18] Y. Xu and W. Wang, “The limit of information propagation speed in large-scale multihop wireless
    networks,” IEEE/ACM Trans. Netw., vol. 19, no. 1, pp. 209–222, Jan. 2011.
    [19] R.Vaze,“Throughput-delay-reliabilitytradeoffwithARQinwirelessadhocnetworks,”IEEETrans.
    Wireless Commun., vol. 10, no. 7, pp. 2142–2149, July 2011.
    [20] P. Jacquet, B. Mans, P. Muhlethaler, and G. Rodolakis, “Opportunistic routing in wireless ad hoc networks: Upper bounds for the packet propagation speed,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1192–1202, Sept. 2009.
    [21] Y.ChenandJ.G.Andrews,“Anupperboundonmulti-hoptransmissioncapacitywithdynamicmul- tipath routing,” IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 3751–3765, June 2012.
    [22] P.-Y. Chen, S.-M. Cheng, W. C. Ao, and K.-C. Chen, “Multi-path routing with end-to-end statistical QoS provisioning in underlay cognitive radio networks,” in Proc. IEEE Infocom 2011 Workshop, Apr. 2011.
    [23] L. Sun and W. Wang, “On distribution and limits of information dissemination latency and speed in mobile cognitive radio networks,” in Proc. IEEE Infocom 2011, Apr. 2011, pp. 246–250.
    [24] W.C.AoandS.-M.Cheng,“Alowerboundonmulti-hoptransmissiondelayincognitiveradioadhoc networks,” in Proc. IEEE PIMRC 2013, Sept. 2013, pp. 3323–3327.
    [25] C. Han and Y. Yang, “Understanding the information propagation speed in multihop cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 12, no. 6, pp. 1242–1255, June 2013.
    [26] Z.Zhang,“Routinginintermittentlyconnectedmobileadhocnetworksanddelaytolerantnetworks: overview and challenges,” IEEE Commun. Surveys Tuts., vol. 8, no. 1, pp. 24–37, Jan./Mar. 2006.
    [27] P.-Y.ChenandK.-C.Chen,“Informationepidemicsincomplexnetworkswithopportunisticlinksand dynamic topology,” in Proc. IEEE GLOBECOM 2010, Dec. 2010.
    [28] X.Zhang,G.Negli,J.Kurose,andD.Towsley,“Performancemodelingofepidemicrouting,”Comput. Netw., vol. 51, no. 10, pp. 2867–2891, July 2007.
    [29] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN routing as a resource allocation problem,” in Proc. Proc. ACM SIGCOMM 2007, Jan. 2007, p. 373–384.
    [30] H.Wen,F.Ren,J.Liu,C.Lin,P.Li,andY.Fang,“Astorage-friendlyroutingschemeinintermittently connected mobile network,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 1138–1149, Mar. 2011.
    [31] Y. Cao, Z. Sun, H. Cruickshank, and F. Yao, “Approach-and-roam: A geographic routing scheme for delay/disruption-tolerant networks,” IEEE Trans. Veh. Technol., vol. 63, no. 1, p. 266–281, Jan. 2014.
    [32] Y.Yang,C.Zhao,S.Yao,W.Zhang,X.Ge,andG.Mao,“Delayperformanceofnetworkcoding-based epidemic routing,” IEEE Trans. Veh. Technol., 2015, accepted for publication.
    [33] L.Galluccio,B.Lorenzo,andS.Glisic,“Sociality-aidednewadaptiveinfectionrecoveryschemesfor multicast DTNs,” IEEE Trans. Veh. Technol., 2015, accepted for publication.
    [34] R.Groenevelt,P.Nain,andG.Koole,“Themessagedelayinmobileadhocnetworks,”Perform.Eval., vol. 62, no. 1-4, pp. 210–228, Oct. 2005.
    [35] W.C.Ao,S.-M.Cheng,andK.-C.Chen,“Phasetransitiondiagramforunderlayheterogeneouscog- nitive radio networks,” in Proc. IEEE Globecom 2010, Dec. 2010.
    [36] I.S.Gradshteyn,I.M.Ryzhik,A.Jeffrey,andD.Zwillinger,TableofIntegrals,Series,andProducts, 6th Edition. Academic Press, 2000.
    [37] R. Hekmat and P. V. Mieghem, “Connectivity in wireless ad-hoc networks with a log-normal radio model,” Mob. Netw. Appl., vol. 11, pp. 351–360, June 2006.

    無法下載圖示 全文公開日期 2020/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE