簡易檢索 / 詳目顯示

研究生: 黎燕婕
Le Thi Yen Thu
論文名稱: 牛血清白蛋白質水溶液之界面擴張模量和吸附動力學研究
A Study on the Dilatational Modulus and Adsorption Kinetics of Bovine Serum Albumin
指導教授: 林析右
Shi-Yow Lin
口試委員: 曾文祺
Wen-Chi Tseng
蔡瑞瑩
Ruey-Yug Tsay
陳立仁
Li-Jen Chen
崔宏瑋
Hung-Wei Tsui
林析右
Shi-Yow Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 71
中文關鍵詞: 牛血清白蛋白質表面張力擴張模量
外文關鍵詞: Bovine serum albumin, surface tension, dilatational modulus
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 球狀蛋白,是一種廣泛應用於科學上且扮演著關鍵作用的蛋白質,其物理與化學性質在過去的幾十年內也被大量的探討與研究。然而迄今為止,球狀蛋白質在氣-液界面的吸附膜之物化特性尚不甚清楚。本論文擬探討牛血清白蛋白質 (Bovine Serum Albumin – BSA)水溶液之吸附行為,並藉懸垂氣泡影像數位化測量儀來量測BSA吸附薄膜的擴張模量。
    本研究量測BSA分子吸附到乾淨的氣-液界面之動態表面張力和氣泡表面積,其張力需2~5天才達平衡。於BSA吸附後期階段,表面張力可保持近乎恆定達數十小時。因此,可以合理地認定此張力是BSA水溶液的平衡表面張力。在0.052 – 15 (10-10 mol/cm3) 濃度範圍中,其平衡張力維持在51.50.3 mN/m 。
    本研究亦嘗試探討BSA水溶液在氣-液界面的吸附機制。將初始時段之動態表面張力數據與擴散(或混合)控制吸附的模型進行最佳比對,結果顯示:BSA水溶液吸附到氣-液界面呈混合控制機制。本研究亦探討如何估算(在不知平衡表面張力數據的情況下)最大表面濃度 () 和吸附的 BSA 分子之分子間相互作用 (K) 的新方法:將氣泡表面擴張期間 (在BSA吸附後期階段) 之動態表面張力與表面狀態方程式進行最佳比對。比對結果可粗估獲知BSA分子的  與K 的值。
    於BSA水溶液吸附程序的後期階段,系統檢測到有諸多微小和低頻的界面擾動。蓋因於環境溫度的細微變化 (1 C)。藉由分析這些擾動所引起的張力和表面積之變化,可用來評估表面擴張速率 [d(lnA)/dt] 和表面張力變化速率 (dγ/dt);對 dγ/dt 與 d(lnA)/dt 作圖,數據呈線性變化,其斜率可粗估獲得其擴張模量:E = dγ/d(lnA)。在BSA濃度為0.05210-10和1510-10 mol/cm3時,BSA薄膜的擴張模量分別為43和30 mN/m。此實驗提供了在氣-液界面受到微小和低頻〔1 – 2%振幅, ~10-4 Hz頻率,低於傳統~10-2 Hz〕的界面擾動情況下,測量擴張模量的可行性。


    The physicochemical properties of globular protein have been extensively studied over the last few decades as they play a pivotal role in numerous scientific applications. Despite notable advancements, the adsorption of globular proteins onto the air-water interface is not well understood to date. Hence, this dissertation majorly focuses on investigating the adsorption of globular protein – bovine serum albumin (BSA) and evaluating the dilatational modulus of BSA films by pendant bubble tensiometry.
    In this study, the surface tension (ST) relaxations, due to the adsorption of BSA molecules onto a clean air-water interface, were measured for 2 – 5 days. The ST remained nearly constant for several tens of hours at the latter stage of BSA adsorption. Therefore, it is reasonable to assume that these near-constant values of ST are the equilibrium ST of BSA solutions. The equilibrium ST kept at 51.50.3 mN/m for a wide range of concentration [0.052 – 15 (10-10 mol/cm3)].
    The adsorption mechanism of BSA onto the air-water interface was additionally examined. The initial regions of the dynamic ST data were best-fitted with the model predictions for diffusion-controlled or mixed diffusive-kinetic controlled adsorption processes. The results of these fitting indicated that the adsorption of BSA onto the air-water interface was likely mixed-controlled. Moreover, a new approach for estimating the maximum surface concentration () and the intermolecular interaction amongst the adsorbed BSA molecules (K) was trialed. The relaxation of ST during a surface expansion, performed at the latter stage of BSA adsorption, was best fitted with the surface equation of state. A reasonably good fitting revealed that the values of  and K for BSA could be estimated without requiring the equilibrium ST data.
    At the latter stage of the BSA adsorption process, numerous minute and low-frequency interfacial perturbances (due to minor variations in ambient temperature, 1 C) were detected. These perturbances were analyzed to evaluate the surface dilatational rate [d(lnA)/dt] and rate of ST change (dγ/dt). The dilatational modulus [E = dγ/d(lnA)] was then obtained from the slope of the linear best-fit in the plot of dγ/dt vs d(lnA)/dt. The dilatational modulus of BSA films at a concentration of 0.05210-10 and 1510-10 mol/cm3 was found to be 43 and 30 mN/m, respectively. These results verified the feasibility of obtaining the dilatational modulus with extremely low frequency surface perturbances.

    摘要 i Abstract ii Acknowledgments iii Table of Contents iv Notations vi Abbreviations viii List of tables ix List of Figures x Chapter 1. Introduction 1 1.1 Objectives and motivation 1 1.2 Outline 2 Chapter 2. Literature Review 3 2.1 Surfactant 3 2.2 Protein 4 2.3 Adsorption 7 2.4 Surface rheology 8 2.5 Surface dilatational modulus 9 2.6 Surface tension 10 2.7 Surface tension measurement 12 2.8 Young-Laplace equation 12 2.9 Pendant bubble tensiometer 14 Chapter 3. Theoretical Framework 17 3.1 Surfactant mass transfer 17 3.3 Adsorption model 17 3.4 Numerical solution 19 3.5 Non-asymptotic short-time formalism 19 3.6 Short-time approximation 20 Chapter 4. On the dilatational modulus and adsorption kinetics of aqueous bovine serum albumin solution 22 4.1 Background and Introduction 22 4.2 Materials and Method 24 4.3 Results 26 4.3.1 Dynamic surface tension 26 4.3.2 Equilibrium surface tension 27 4.3.3 Adsorption mechanism of BSA 31 4.3.4 Surface perturbations 33 4.3.5 Dilatational modulus evaluation 37 4.3.6 Estimation  and K 40 4.3.7 Reversible adsorption of BSA 44 Chapter 5. Conclusion and Future work 46 5.1 Conclusion 46 5.2 Future works 46 References 48 Appendix 54 Curriculum Vitae 56

    [1] H Wackerbarth, T Stoll, S Gebken, C Pelters, U Bindrich. Carotenoid–protein interaction as an approach for the formulation of functional food emulsions. Food Res. Int., 2009. 42: p. 1254-1258.
    [2] I Golfomitsou, E Mitsou, A Xenakis, V Papadimitriou. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. J. Mol. Liq., 2018. 268: p. 734-742.
    [3] M Khaldi, P Blanpain-Avet, R Guerin, G Ronse, L Bouvier, C Andre, S Bornaz, T Croguennec, R Jeantet, G Delaplace. Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger. J. Food Eng., 2015. 147: p. 68-78.
    [4] A Sionkowska, A Płanecka. Surface properties of thin films based on the mixtures of chitosan and silk fibroin. J. Mol. Liq., 2013. 186: p. 157-162.
    [5] B Chen, H Wang, H Zhang, Z He, S Zhang, T Liu, Y Zhou. A novel hydrogen peroxide sensor based on hemoglobin immobilized PAn–SiO2/DTAB composite film. J. Mol. Liq., 2012. 171: p. 23-28.
    [6] FJ Walther, LM Gordon, AJ Waring. Advances in synthetic lung surfactant protein technology. Expert Rev. Resp. Med., 2019. 13: p. 499-501.
    [7] I Fatma, V Sharma, RC Thakur, A Kumar. Current trends in protein-surfactant interactions: A review. J. Mol. Liq., 2021. 341: p. 117344.
    [8] S Damodaran, A Paraf, Food Proteins and their Applications. 1st ed. 1997, Boca Raton: CRC Press.
    [9] M Hayes. Current and Future Trends in Protein Use and Consumption, in Novel Proteins for Food, Pharmaceuticals and Agriculture. R Miller, 2018, New York: John Wiley & Son. p. 257-268.
    [10] SY Lin, K McKeigue, C Maldarelli. Diffusion-limited interpretation of the induction period in the relaxation in surface tension due to the adsorption of straight chain, small polar group surfactants: theory and experiment. Langmuir, 1991. 7: p. 1055-1066.
    [11] SY Lin, K McKeigue, C Maldarelli. Diffusion-controlled surfactant adsorption studied by pendant drop digitization. AIChE J, 1990. 36: p. 1785-1795.
    [12] J Benjamins, A Cagna, EH Lucassen-Reynders. Viscoelastic properties of triacylglycerol/water interfaces covered by proteins. Colloid Surface A: Physicochem. Eng. Asp., 1996. 114: p. 245-254.
    [13] A Berthold, H Schubert, N Brandes, L Kroh. Behaviour of BSA and of BSA-derivatives at the air/water interface. Colloid Surface A: Physicoche. Eng. Asp., 2007. 301: p. 16-22.
    [14] AA Mikhailovskaya, SY Lin, G Loglio, R Miller, BA Noskov. Effect of a cationic surfactant on protein unfolding at the air–solution interface. Mendeleev Commun., 2011. 21: p. 341-343.
    [15] BA Noskov, AA Mikhailovskaya, SY Lin, G Loglio, R Miller. Bovine Serum Albumin Unfolding at the Air/Water Interface as Studied by Dilational Surface Rheology. Langmuir, 2010. 26: p. 17225-17231.
    [16] F Monroy, J Giermanska Kahn, D Langevin. Dilational viscoelasticity of surfactant monolayers. Colloid Surface A: Physicochem. Eng. Asp., 1998. 143: p. 251-260.
    [17] AM Díez-Pascual, F Monroy, F Ortega, RG Bubio, R Miller, BA Noskov. Adsorption of Water-Soluble Polymers with Surfactant Character. Dilational Viscoelasticity. Langmuir, 2007. 23: p. 3802-3808.
    [18] VI Kovalchuk, EV Aksenenko, AV Makievski, VB Fainerman, R Miller. Dilational interfacial rheology of tridecyl dimethyl phosphine oxide adsorption layers at the water/hexane interface. J. Colloid Interface Sci., 2019. 539: p. 30-37.
    [19] MJ Josen. Surfactants and Interfacial Phenomena. 1978, New York: John Wiley and Sons.
    [20] D Myers. Surfaces, Interfaces and Colloids: Principles and Applications. 2nd ed. 1999, New York: John Wiley and Sons.
    [21] B Dong, N Li, L Zheng, L Yu, T Inoue. Surface Adsorption and Micelle Formation of Surface Active Ionic Liquids in Aqueous Solution. Langmuir, 2007. 23: p. 4178-4182.
    [22] LP Jackson, R Andrade, I Pleasant, BP Grady. Effects of pH and Surfactant Precipitation on Surface Tension and CMC Determination of Aqueous Sodium n-Alkyl Carboxylate Solutions. J. Surf. Deter., 2014. 17: p. 911-917.
    [23] M Bielawska, A Chodziska, B Janczuk, A Zdiennicka. Determination of CTAB CMC in mixed water+short-chain alcohol solvent by surface tension, conductivity, density and viscosity measurements. Colloid Surface A: Physicochem. Eng. Asp., 2013. 424: p. 81-88.
    [24] VD Dolzhikova, OA Soboleva, BD Summ. Contact angles as indicators of micellization. Colloid J., 1997. 59: p. 309-312.
    [25] TTY Le, S Hussain, SY Lin. A study on the determination of the critical micelle concentration of surfactant solutions using contact angle data. J. Mol. Liq., 2019. 294: p. 111582.
    [26] SY Lin, YY Lin, EM Chen, CT Hsu, CC Kwan. A Study of the Equilibrium Surface Tension and the Critical Micelle Concentration of Mixed Surfactant Solutions. Langmuir, 1999. 15(13): p. 4370-4376.
    [27] B Vulliezlenormand, JL Eisele. Determination of Detergent Critical Micellar Concentration by Solubilization of a Colored Dye. Anal. Biochem., 1993. 208: p. 241-243.
    [28] HB Klevens. Solubilization. Chem. rev., 1950. 47(1): p. 1-74.
    [29] Ö Topel, BA Cakir, L Budama, N Hoda. Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J. Mol. Liq., 2013. 177: p. 40-43.
    [30] K Ogino, T kubota, H Uchiyama, M Abe. Micelle Formation and Micellar Size by a Light Scattering Technique. J. Jpn. Oil Chem. Soc., 1988. 37: p. 588-591.
    [31] D Whitford. Proteins: Structure and Function. 2005, West Sussex: John Wiley & Sons.
    [32] AL Shapiro, E Viñuela, JV Maizel. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun., 1967. 28: p. 815-820.
    [33] SP Fling, DS Gregerson. Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal. Biochem., 1986. 155: p. 83-88.
    [34] T Svedberg, R Fåhraeus. A new method for the determination of the molecular weight of the proteins. J. Am. Chem. Soc., 1926. 48: p. 430-438.
    [35] AJ Rowe. Sedimentation Equilibrium Analytical Ultracentrifugation, in Encyclopedia of Biophysics, GCK Roberts, Editor. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 2283-2289.
    [36] GM Nazarian. Determination of molecular weight from the interference pattern of sedimentation equilibrium in the ultracentrifuge. Anal. Chem., 1968. 40: p. 1766-1769.
    [37] B Jacrot, G Zaccai. Determination of molecular weight by neutron scattering. Biopolymers, 1981. 20(11): p. 2413-2426.
    [38] G Zaccai, B Jacrot. Small Angle Neutron Scattering. Annu. Rev. Biophys. Bio., 1983. 12(1): p. 139-157.
    [39] A Engel. Molecular weight determination by scanning transmission electron microscopy. Ultramicroscopy, 1978. 3: p. 273-281.
    [40] SA Müller, A Engel. Structure and mass analysis by scanning transmission electron microscopy. Micron, 2001. 32(1): p. 21-31.
    [41] G Walsh. Proteins Biochemistry and Biotechnology. 2nd ed. 2014, West Sussex: Wiley Blackwell.
    [42] JT Carl Ivar Brande. Introduction to Protein Structure. 2nd ed. 1998, New York: Garland Science.
    [43] L Pauling, RB Corey, HR Branson. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. P. Natl. Acad. Sci. U. S. A., 1951. 37(4): p. 205-211.
    [44] R Miller, L Liggieri, Interfacial Rheology. 2nd ed. 2009, London: CRC Press.
    [45] L de Souza Soares, JT de Faria, ML Amorim, JM de Araujo, LA Minim, JS dos Reis Coimbra, AVN de Carvalho, EB de Oliveria. Rheological and Physicochemical Studies on Emulsions Formulated with Chitosan Previously Dispersed in Aqueous Solutions of Lactic Acid. Food Biophys., 2017. 12: p. 109-118.
    [46] C Gallegos, J Franco, P Partal. Rheology of food dispersions. in Rheology Reviews, DM Binding, K Walter, Editor. 2004, United Kingdom: Bristish Society of Rheology Place. p. 19-65.
    [47] AO Gbadamosi, R Junin, MA Manan, A Agi, JO Oseh, J Usman. Effect of aluminium oxide nanoparticles on oilfield polyacrylamide: Rheology, interfacial tension, wettability and oil displacement studies. J. Mol. Liq., 2019. 296: p. 111863.
    [48] A Maghsoudian, Y Tamsilian, S Kord, BS Soulgani, A Esfandiarian, M Shajirat. Styrene intermolecular associating incorporated-polyacrylamide flooding of crude oil in carbonate coated micromodel system at high temperature, high salinity condition: Rheology, wettability alteration, recovery mechanisms. J. Mol. Liq., 2021. 337: p. 116206.
    [49] D Weaire. The rheology of foam. Curr. Opin. Colloid Interface Sci., 2008. 13(3): p. 171-176.
    [50] HA Barnes. Rheology of emulsions - a review. Colloid Surface A: Physicochem. Eng. Asp., 1994. 91: p. 89-95.
    [51] E Guerin, P Tchoreloff, N Leclerc, D Tanguy, M Deleuil, G Couarraze. Rheological characterization of pharmaceutical powders using tap testing, shear cell and mercury porosimeter. Int. J. Pharmaceut., 1999. 189: p. 91-103.
    [52] HC Kim, YY Won. Clinical, technological, and economic issues associated with developing new lung surfactant therapeutics. Biotech. Adv., 2018. 36: p. 1185-1193.
    [53] X Zhang, Z Wang, K Wang, JA Reyes-Labarta, J Gao, D Xu, Y Wang. Liquid-liquid phase equilibrium and interaction exploration for separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water) with two imidazolium-based ionic liquids. J. Mol. Liq., 2020. 300: p. 112266.
    [54] AR Nesarikar. Rheology of Polymer Blend Liquid-Liquid Phase Separation. Macromolecules, 1995. 28: p. 7202-7207.
    [55] PA Kralchevsky, K Nagayama. Chapter 3 - Surface Bending Moment and Curvature Elastic Moduli, in Studies in Interface Science, PA Kralchevsky, K Nagayama, Editors. 2001, New York: Elsevier. p. 105-136.
    [56] TD Gurkov, PA Kralchevsky. Surface tension and surface energy of curved interfaces and membranes. Colloid Surface, 1990. 47: p. 45-68.
    [57] F Ravera, G Loglio, VI Kovalchuk. Interfacial dilational rheology by oscillating bubble/drop methods. Curr. Opin. Colloid Interface Sci., 2010. 15: p. 217-228.
    [58] JW Gibbs. Collected Works. Vol. 1. 1928, New York: Longmans.
    [59] VI Kovalchuk, EV Aksenenko, DV Trukhin, AV Makievski, VB Fainerman, R Miller. Effect of Amplitude on the Surface Dilational Visco-Elasticity of Protein Solutions. Colloid Interface, 2018. 2: p. 57.
    [60] EH Lucassen-Reynders. Interfacial Viscoelasticity in Emulsions and Foams. J. Food Struct., 1993. 12: p. 1-12.
    [61] NA Alexandrov, KG Marinova, TD Gurkov, KD Danov, PA Kralchevsky, SD Stoyanov, TBJ Blijdenstein, LN Arnaudov, EG Palan, A Lips. Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times. J. Colloid Interface Sci., 2012. 376: p. 296-306.
    [62] JT Petkov, TD Gurkov, BE Campbell, RP Borwankar. Dilatational and Shear Elasticity of Gel-like Protein Layers on Air/Water Interface. Langmuir, 2000. 16: p. 3703-3711.
    [63] J Lucassen, M van Den Tempel. Longitudinal waves on visco-elastic surfaces. J. Colloid Interface Sci., 1972. 41: p. 491-498.
    [64] C Lemaire, D Langevin. Longitudinal surface waves at liquid interfaces: Measurement of monolayer viscoelasticity. Colloid Surface, 1992. 65: p. 101-112.
    [65] M Færgemand, BS Murray. Interfacial Dilatational Properties of Milk Proteins Cross-Linked by Transglutaminase. J. Agr. Food Chem., 1998. 46(3): p. 884-890.
    [66] LG Cascão Pereira, O Theodoly, HW Blanch, CJ Radke. Dilatational Rheology of BSA Conformers at the Air/Water Interface. Langmuir, 2003. 19: p. 2349-2356.
    [67] EA Foegeding, PJ Luck, JP Davis. Factors determining the physical properties of protein foams. Food Hydrocolloid, 2006. 20(2): p. 284-292.
    [68] BA Noskov, AV Latnikova, SY Lin, G Loglio, R Miller. Dynamic Surface Elasticity of β-Casein Solutions during Adsorption. J. Phys. Chem. C, 2007. 111: p. 16895-16901.
    [69] BA Noskov, DO Grigoriev, AV Latnikova, SY Lin, G Loglio, R Miller. Impact of Globule Unfolding on Dilational Viscoelasticity of β-Lactoglobulin Adsorption Layers. J. Phys. Chem. B, 2009. 113: p. 13398-13404.
    [70] K Sankaranarayanan, A Dhathathreyan, J Krägel, R Miller. Interfacial Viscoelasticity of Myoglobin at Air/Water and Air/Solution Interfaces: Role of Folding and Clustering. J. Phys. Chem. B, 2012. 116: p. 895-902.
    [71] K Engelhardt, M Lexis, G Gochev, C Konnerth, R Miller, N Willenbacher, W Peukert, B Braunschweig. pH Effects on the Molecular Structure of β-Lactoglobulin Modified Air–Water Interfaces and Its Impact on Foam Rheology. Langmuir, 2013. 29: p. 11646-11655.
    [72] KJ Stebe, SY Lin. Chapter 2 Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis. in Handbook of Surfaces and Interfaces of Materials, HS Nalwa, Editor. 2001, Burlington: Academic Press. p. 55-106.
    [73] C Huh, RL Reed. A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes. J. Colloid Interface Sci., 1983. 91: p. 472-484.
    [74] A Fick. Ueber Diffusion. Annalen der Physik, 1855. 170: p. 59-86.
    [75] SY Lin, K McKeigue, C Maldarelli. Effect of Cohesive Energies between Adsorbed Molecules on Surfactant Exchange Processes: Shifting from Diffusion Control for Adsorption to Kinetic-Diffusive Control for Re-equilibration. Langmuir, 1994. 10: p. 3442-3448.
    [76] SN Moorkanikkara, D Blankschtein. Short-time behavior of mixed diffusion-barrier controlled adsorption. J. Colloid Interface Sci., 2006. 296: p. 442-457.
    [77] P Joos, E Rillaerts. Theory on the determination of the dynamic surface tension with the drop volume and maximum bubble pressure methods. J. Colloid Interface Sci., 1981. 79: p. 96-100.
    [78] AV Makievski, G Loglio, J Kragel, R Miller, VB Fainerman, AW Neumann. Adsorption of Protein Layers at the Water/Air Interface As Studied by Axisymmetric Drop and Bubble Shape Analysis. J. Phys. Chem. B, 1999. 103: p. 9557-9561.
    [79] R Van den Bogaert, P Joos. Dynamic surface tensions of sodium myristate solutions. J. Phys. Chem., 1979. 83: p. 2244-2248.
    [80] K Kaur, R Kumar, SK Mehta. Nanoemulsion: A new medium to study the interactions and stability of curcumin with bovine serum albumin. J. Mol. Liq., 2015. 209: p. 62-70.
    [81] J Feng, X Liang, Z Ma. New immunoprobe: Dual-labeling ZIF-8 embellished with multifunctional bovine serum albumin lamella for electrochemical immunoassay of tumor marker. Biosens. Bioelectron., 2021. 175: p. 112853.
    [82] V Sharma, A Kumar, P Ganguly, AM Biradar. Highly sensitive bovine serum albumin biosensor based on liquid crystal. Appl. Phys. Lett., 2014. 104: p. 043705.
    [83] YK Manea, A Khan, MTA Qashqoosh, AA Wani, M Shahadat. Ciprofloxacin-supported chitosan/polyphosphate nanocomposite to bind bovine serum albumin: Its application in drug delivery. J. Mol. Liq., 2019. 292: p. 111337.
    [84] ZN Sheikhi, M Khajeh, AR Oveisi, M Bohlooli. Functionalization of an iron-porphyrinic metal–organic framework with Bovine serum albumin for effective removal of organophosphate insecticides. J. Mol. Liq., 2021. 343: p. 116974.
    [85] H Yuan, X Zheng, W Liu, H Zhang, J Shao, J Yao, C Mao, J Hui, D Fan. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloid Surface B: Biointerface, 2020. 192: p. 111041.
    [86] M Paulsson, P Dejmek. Surface film pressure of β-lactoglobulin, α-lactalbumin and bovine serum albumin at the air/water interface studied by wilhelmy plate and drop volume. J. Colloid Interface Sci., 1992. 150: p. 394-403.
    [87] P Suttiprasit, J McGuire. The surface activity of α-lactalbumin, β-lactoglobulin, and bovine serum albumin: II. Some molecular influences on adsorption to hydrophilic and hydrophobic silicon surfaces. J. Colloid Interface Sci., 1992. 154: p. 327-336.
    [88] D Cho, G Narsimhan, EI Franses. Adsorption Dynamics of Native and Pentylated Bovine Serum Albumin at Air-Water Interfaces: Surface Concentration/ Surface Pressure Measurements. J. Colloid Interface Sci., 1997. 191: p. 12-25.
    [89] C Ybert, JM di Meglio. Study of Protein Adsorption by Dynamic Surface Tension Measurements:  Diffusive Regime. Langmuir, 1998. 14: p. 471-475.
    [90] X Wen, EI Franses. Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film. Colloid Surface A: Physicochem. Eng. Asp., 2001. 190: p. 319-332.
    [91] SJ McClellan, EI Franses. Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin. Colloid Surface B: Biointerface, 2003. 28: p. 63-75.
    [92] P Sausse, V Aguie-Beghin, R Douillard. Effects of epigallocatechin gallate on -casein adsorption at the air/water interface. Langmuir, 2003. 19: p. 737-743.
    [93] D Güzey, I Gulseren, B Bruce, J Weiss. Interfacial properties and structural conformation of thermosonicated bovine serum albumin. Food Hydrocolloid, 2006. 20: p. 669-677.
    [94] MR Rodríguez Niño, JM Rodríguez Patino. Effect of the Aqueous Phase Composition on the Adsorption of Bovine Serum Albumin to the Air−Water Interface. Ind. Eng. Chem. Res., 2002. 41: p. 1489-1495.
    [95] İ Gülseren, D Guzey, BD Bruce, J Weiss. Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason. Sonochem., 2007. 14: p. 173-183.
    [96] MD Reichert, NJ Alvarez, CF Brooks, AM Grillet, LA Mondy, SL Anna, LM Walker. The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems. Colloid Surface A: Physicochem. Eng. Aspect, 2015. 467: p. 135-142.
    [97] J Boos, N Preisig, C Stubenrauch, Dilational surface rheology studies of n-dodecyl-β-d-maltoside, hexaoxyethylene dodecyl ether, and their 1:1 mixture. Adv. Colloid Interface Sci., 2013. 197-198: p. 108-117.
    [98] VB Fainerman, VI Kovalchuk, EV Aksenenko, R Miller. Dilational Viscoelasticity of Adsorption Layers Measured by Drop and Bubble Profile Analysis: Reason for Different Results. Langmuir, 2016. 32: p. 5500-5509.
    [99] SY Lin, HF Hwang. Measurement of Low Interfacial Tension by Pendant Drop Digitization. Langmuir, 1994. 10: p. 4703-4709.
    [100] RB Bird, WE Stewart, EN Lightfoot. Transport Phenomena, 2nd ed. 1960, New York: John Wiley and Sons.
    [101] S Damodaran, KB Song. Diffusion and Energy Barrier Controlled Adsorption of Proteins at the Air—Water Interface, in Interactions of Food Proteins. 1991, American Chemical Society. p. 104-121.
    [102] G Yuan, PA Kienzle, SK Satija. Salting Up and Salting Down of Bovine Serum Albumin Layers at the Air–Water Interface. Langmuir, 2020. 36: p. 15240-15246.
    [103] JR Hunter, PK Kilpatrick, RG Carbonell. Lysozyme adsorption at the air/water interface. J. Colloid Interface Sci., 1990. 137: p. 462-482.
    [104] G Narsimhan, F Uraizee. Kinetics of Adsorption of Globular Proteins at an Air-Water Interface. Biotechn. Progr., 1992. 8: p. 187-196.
    [105] Q Jiang, YC Chiew. Dynamics of adsorption and desorption of proteins at an air/water interface. Colloid Surface B: Biointerface, 2001. 20: p. 303-308.
    [106] Z Wang, G Narsimhan. Interfacial Dilatational Elasticity and Viscosity of β-Lactoglobulin at Air−Water Interface Using Pulsating Bubble Tensiometry. Langmuir, 2005. 21: p. 4482-4489.
    [107] A Poirier, A Banc, A Stocco, M In, L Ramos. Multistep building of a soft plant protein film at the air-water interface. J. Colloid Interface Sci., 2018. 526: p. 337-346.
    [108] G Gonzalez, F MacRitchie, Equilibrium adsorption of proteins. J. Colloid Interface Sci., 1970. 32: p. 55-61.
    [109] JR Hunter, PK Kilpatrick, RG Carbonell. β-casein adsorption at the air/water interface. J. Colloid Interface Sci., 1991. 142: p. 429-447.
    [110] S Damodaran, S Xu. The Role of Electrostatic Forces in Anomalous Adsorption Behavior of Phosvitin at the Air/Water Interface. J. Colloid Interface Sci., 1996. 178: p. 426-435.

    無法下載圖示 全文公開日期 2025/05/10 (校內網路)
    全文公開日期 2025/05/10 (校外網路)
    全文公開日期 2025/05/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE