簡易檢索 / 詳目顯示

研究生: 王佳勳
Jia-syun Wang
論文名稱: 以環氧樹脂研磨盤研究不同磨粒加工機制於硬脆材料與延性材料
Analysis of Different Abrasive Machining Mechanisms with Epoxy Resin Pads in Brittle and Ductile Materials
指導教授: 鍾俊輝
Chun-hui chung
口試委員: 林原慶
Yuan-ching Lin
張復瑜
Fun-Yu chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 環氧樹脂研磨盤固定磨粒加工游離磨粒加工
外文關鍵詞: Epoxy resin lapping pad, Bonded abrasive machining, Free abrasive machining
相關次數: 點閱:360下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

研磨加工是一種廣泛用於製程最後之步驟,透過研磨加工來獲得更高的表面品質,或是用於切削高硬度材料,可應用於金屬材料、陶瓷、玻璃及矽基板等。研磨加工主要可以分為兩種加工機制:固定磨粒加工與游離磨粒加工,然而,在選用研磨加工機制時仍未有相關研究明確指出,在相同實驗參數與表面顆粒數目下,固定磨粒加工機制與游離磨粒加工機制兩者對研磨材料造成之影響,及相同的加工條件下要如何有效的選擇加工機制來獲得最佳製程效率。本研究使用環氧樹脂研磨盤,以材料移除量、磨削力比、表面粗糙度及次表面破壞,觀察不同負荷分別延性材料與脆性材料以固定磨粒加工與游離磨粒加工產生之結果與現象。由實驗結果得知,在使用14 μm氧化鋁磨粒進行研磨時,若為追求材料移除量,建議使用游離磨料加工方式進行,但若追求較佳之表面粗糙度,則建議以固定磨粒加工方式進行研磨。固定磨粒研磨時增加負荷可降低表面粗糙度,同時增加材料移除量,但對石英而言有增加次表面破壞之風險。


Abrasive machining is one kind of machining processes which is widely used at the finishing step to obtain higher surface quality, or to machine extremely hard materials. Depending on whether the abrasive particles are bonded on the tool or not, abrasive machining can be classified into two types: bonded abrasive and free abrasive machining processes. Most of studies done of abrasive machining focus on the effects of process parameters and the comparison between the different types of the pad used in the process. However, few research compared these two abrasive machining mechanisms with consistent machining parameters. In this study, the experiments have been conducted with identical parameters to compare these two types of abrasive machining mechanisms. Epoxy resin pad was utilized to machine S45C carbon steel and quartz, which are ductile and brittle materials, respectively. The results of material removal, grinding force ratio, surface roughness, sub-surface damage with different loads are presented in this thesis. The results show that free abrasive machining results in higher material removal rate, and bonded abrasive machining contribute better surface finish.
In addition, bonded abrasive grinding tends to reduce surface roughness and increase the amount of material removal with the increase of normal load. However, there is a risk of sub-surface damage for quartz.

摘要 I ABSTRACT II 致謝 III 目錄 IV 表索引 VII 圖索引 VIII 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 論文架構 3 第2章 文獻回顧 4 2.1 研磨盤 4 2.2 磨粒加工 7 2.3 硬脆材料研磨機制探討 10 第3章 實驗方法與設備 12 3.1 環氧樹脂複合研磨盤製作 14 3.1.1 氧化鋁研磨盤之組成成分 14 3.1.2 漿料濃度換算 16 3.1.3 壓鑄設備及模具 20 3.1.4 熱壓實驗步驟 22 3.2 研磨實驗 25 3.2.1 實驗設備及試片 27 3.2.2 銷對盤實驗原理 32 3.2.3 研磨實驗步驟 34 3.3 研磨後之表面形貌及次表面破壞觀測 38 第4章 實驗結果 40 4.1 S45C碳鋼試片研磨實驗結果 40 4.1.1 不同負荷下S45C碳鋼研磨分析 40 4.1.2 不同負荷下S45C碳鋼表面粗糙度分析 44 4.1.3 S45C碳鋼試片研磨結果總整理 50 4.2 石英試片研磨實驗結果 51 4.2.1 不同負荷下石英研磨分析 51 4.2.2 不同負荷下石英表面粗糙度分析 55 4.2.3 不同負荷下次表面破壞分析 63 4.2.4 石英試片研磨結果整理 67 4.3 研磨盤損耗分析 68 4.3.1 S45C碳鋼試片研磨對研磨盤之影響 68 4.3.2 石英試片研磨對研磨盤之影響 70 第5章 實驗綜合討論 72 5.1 固定磨粒加工對S45C碳鋼與石英試片之影響比較 73 5.2 游離磨粒加工對S45C碳鋼與石英試片之影響 76 5.3 綜合討論 79 第6章 結論 83 參考文獻 85 附錄A固定磨粒機制-表面粗糙度 88 附錄B游離磨粒機制-表面粗糙度 92 附錄C固定磨粒加工機制-材料移除量 96 附錄D游離磨粒加工機制-材料移除量 97 附錄E固定磨粒加工機制-研磨盤磨耗 98 附錄F游離磨粒加工機制-研磨盤磨耗 99 附錄G 氧化鋁粒徑分析表 100 附錄H 環氧樹脂化學性質表 101

[1]Lam-Plan S.A, 2005, "Lapping and Polishing Device," United States Patent, NO.6837780 B1.
[2]Struers A/S, 2000, "Grinding/Polishing Cover Sheet for Placing on A Rotatable Grinding/Polishing Disk," United States Patent, NO. 6019672.
[3]J. J. Gagliardi, 1999, "An Introduction to Fixed Abrasive CMP," Semiconductor CMP group, 3M abrasive system division.
[4]J. Choi, H. Kim, J. Park, S. Chung , H. Jeong and M. Kinoshita, 2004, "A Study on The Manufacture of The Next Generation CMP Pad with A Uniform Shape Using The Micro Molding Method," Proceedings of International Symposium on Advances in Abrasive Technology, Vol. 257-258, pp. 257-413.
[5]T. Enomoto, U. Satake, T. Fujita and T. Sugihara, 2013, "Spiral-structured Fixed-Abrasive Pads for Glass Finishing," CIRP Annals -Manufacturing Technology, Vol. 62, Issue 1, pp. 413-416.
[6]M. Buijs, 1993, "A Model for Lapping of Glass," Journal of Materials Science, Vol. 28, pp. 3014-3020.
[7]W. T. Tseng, L. C. Kang, J. H. Chin and P. Y. Cheng, 1998, "Distribution of Pressure and Its Effects on The Removal Rate During Chemical Mechanical Polishing Process," Proceedings of CMP-MIC conference, California, U.S.A, pp. 87-94.
[8]J. Grillaert, M. Meuris, N. Heylen, K. Devriendt and E. Vrancken, 1998, "Modelling Step Height Reduction and Local Removable Rates Based on Pad-substrate Interactions," Proceedings of CMP-MIC conference, California, U.S.A, pp. 79-86.

[9]J. Park, H. Juno, K. Yoshida and M. Kinoshita, 2008, "Pad Surface Treatment to Control Performance of Chemical Mechanical Planarization," The Japan Society of Applied Physics, Vol. 47, No. 2, pp. 1028-1033.
[10]G. Skomedal, E. J. Ovrelid, S. Armada and N. Espallargas, 2011, "Effect of Slurry Parameters on Material Removal Rate in Multi-wire Sawing of Silicon Wafers: A Tribological Approach," Proceedings of the Institution of Mechanical Engineers, Part J : Journal of Engineering Tribology, Vol. 225, pp. 1023-1035.
[11]林明智,化學機械研磨的微觀機制探討,碩士論文,國立中央大學化學工程研究所,桃園,台灣,2000。
[12]柯閎仁,熱熔膠研磨墊的開發及其對矽晶圓研磨效果之研究,碩士論文,國立中央大學機械工程研究所,桃園,台灣,2009。
[13]K. H. Zum Gahr, 1987, Microstructure and Wear of Material, Elsevier, North-holland.
[14]J. A. Williams and A. M. Hyncica, 1992, "Mechanisms of Abrasive Wear in Lubricated Contacts," Wear, Vol. 152, pp. 57-74.
[15]H. J. Moller, 2004, "Basic Mechanisms and Models of Multi-wire Sawing," Advanced Engineering Materials, Vol. 6, pp. 501-513.
[16]M. Buijs and K. Houten, 1993, "Three-Body Abrasion of Brittle Materials as Studied by Lapping," Wear, Vol. 166, pp. 237-245.
[17]H. T. Young, H. T. Liao and H. Y. Huang, 2006, "Surface Integrity of Silicon Wafers in Ultra Precision Machining," The International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 372-378.
[18]J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault and O. Rondeau, 2010, "Loose Abrasive Slurries for Optical Glass Lapping," Optical Society of America - APPLIED OPTICS, Vol. 49, No. 30, pp. 5736-5745.
[19]彭凱奇,二氧化鈦奈米粉末於高分子鑽石複合研磨盤之研磨性能研究,碩士論文,國立台灣科技大學機械工程研究所,台北,台灣,2013。
[20]劉大佼,高分子加工原理與應用,揚智文化,台北,台灣,1997。
[21]O. Imanaka, 1966, "Lapping Mechanisms of Glass—Especially on Roughness of Lapped Surface," CIRP Annals - Manufacturing Technology, Vol. 13, pp. 227-233.
[22]N. Bloembergen, 1973, "Role of Cracks, Pores, and Absorbing Inclusions on Laser Damage Threshold at Surface of Transparent Dielectric," Optical Society of America-APPLIED OPTICS, Vol. 12, No. 4, pp. 661-664.
[23]F. Y. Genin, A. Salleo, T. V. Pistor and L. L. Chase, 2001, "Role of Light Intensification by Cracks in Optical Breakdown on Surfaces," Journal of the Optical Society of America A: Optics and Image Science, and Vision, Vol. 18, No. 10, pp. 2607-2616.
[24]M. D. Feit and A. M. Rubenchik, 2004, "Influence of Sub-surface Cracks on Laser Induced Surface Damage," Proceedings of SPIE -The International Society for Optical Engineering, Vol. 5273, pp. 264-272.
[25]H. Bercegol, P. Grua, D. Hebert and J. P. Morreeuw, 2008, " Progress in The Understanding of Fracture Related Damage of Fused Silica," Proceedings of 39th Annual Symposium on Optical Materials for High-Power Lasers, Sep. 24-26, Colorado, U.S.A.
[26]F. W. Preston, 1927, "The Theory and Design of Plate Glass Polishing Machine," Proceedings of SGT- Society of glass technology, Vol. 11, pp. 214-257.

QR CODE