簡易檢索 / 詳目顯示

研究生: 張文齡
Wen-Ling Chang
論文名稱: .應用於非侵入式血糖偵測系統之 28-30 GHz發射機
A 28-30 GHz Transmitter for Non-Invasive Glucose Sensing System
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 邱弘緯
Hung-Wei Chiu
楊成發
Chang-Fa Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 72
中文關鍵詞: 功率放大器壓控振盪器轉換器微波單晶積體電路非侵入式血糖偵測系統
外文關鍵詞: Power amplifier, Voltage-controlled oscillator, Transformer, Monolithic microwave integrated circuit, Non-invasive glucose sensing system
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用台積電CMOS 90 nm 1P9M製程,設計並實作出一個適用28-30 GHz非侵入式血糖偵測系統之發射機。
平時糖尿病患者為了偵測血糖的濃度,平時都必須在手上刺針以量測血糖濃度,使患者造成疼痛。隨著糖尿病患者的增加,越來越多研究者開始重視這樣的議題,期望能設計出一個非侵入式的血糖偵測系統。此發射機由壓控震盪器產生訊號並透過連接在緩衝器上的阻抗轉換器將雙端訊號轉成單端並連接到輸入阻抗為50Ω的功率放大器上打出全頻帶最少4.5dBm的功率。晶片面積為1304 μm X 1287 μm。


A 28-30 GHz RF transmitter for non-invasive glucose sensing system is designed and fabricated in a standard 1P9M TSMC 90nm CMOS process.
Existing conventional method utilizing blood require acquisition of a blood sample by pricking the finger, which is painful and inconvenient In diabetes research, non-invasive glucose monitoring system have drawn more and more attention because the incidence of diabetes is increasing, and more and more people are affected currently. The transmitter is combined by a differential VCO following a buffer with an impedance transformer to connect to the single-ended stage PA with an input matching of 50 Ω. In the overall frequency band from 28 to 30 GHz the transmitter emit at least 4.5 dBm of power in the overall frequency band. The area of the die is 1304 μm X 1287 μm.

Contents 摘要 IV Abstract V 誌謝 VI Chapter 1 、Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 、System Structure 3 2.1 Introduction 3 2.2 Link Budget of the System 3 2.3 The Consideration of the System 5 2.2.1 Phase Noise 6 2.3 Voltage Controlled Oscillator 8 2.4 Transformer 11 2.5 Class E Power Amplifier 13 2.5.1 Ideal Class-E Power Amplifier Operation 14 2.5.2 Non-Ideal Class-E Power Amplifier Operation 25  Finite switching Time 25  Finite “ON” and “OFF” Resistance 26  Power Loss of Common Source Class-E Power Amplifier 28  Power Loss of Cascode Class-E Power Amplifier 29 Chapter 3 、System Design 29 3.1 Voltage Control Oscillator 29 3.2 Transformer 32 3.3 Class-E Power Amplifier 34 3.3.1 Small Signal Simulation Results 40 3.3.2 Large-Signal Simulation Results 42 3.3.3 Transient Simulation Results 42 3.4 Transmitter 43 Chapter 4 、Measurement Results 45 4.1 VCO 45 4.2 PA 47 4.3 Transmitter 50 4.4 Conclusion 54 References 56  

[1] P. H. Siegel, A. Tang, G. Virbila, Y. Kim, M. C. F. Chang and V. Pikov, "Compact non-invasive millimeter-wave glucose sensor," 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015, pp. 1-3.
[2] Vashist, S. K. Non-invasive glucose monitoring technology in diabetes management: A review. Analytica chimica acta 750, 16–27 (2012).
[3] Tamada, J. A. et al. Noninvasive glucose monitoring - Comprehensive clinical results. Jama-J Am Med Assoc 282, 1839–1844
[4] Alexeeva, N. V. & Arnold, M. A. Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin. Journal of diabetes science and technology 4, 1041–1054 (2010).
[5] Cho, O. K., Kim, Y. O., Mitsumaki, H. & Kuwa, K. Noninvasive measurement of glucose by metabolic heat conformation method. Clinical Chemistry 50, 1894–1898 (2004).
[6] Gelao, G., Marani, R., Carriero, V. & Perri, A. G. Design of a dielectric spectroscopy sensor for continuous and non-invasive blood glucose monitoring. International Journal of Advances in Engineering & Technology 3, 55 (2012).
[7] P. H. Siegel, Y. Lee and V. Pikov, "Millimeter-wave non-invasive monitoring of glucose in anesthetized rats," 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, 2014, pp. 1-2.
[8] P. H. Siegel, A. Tang, R. Kim, G. Virbila, F. Chang and V. Pikov, "Noninvasive in vivo millimeter-wave measurements of glucose: First results in human subjects," 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, 2017, pp. 1-2.
[9] N. O. Sokal and A. D. Sokal, “Class E—A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, no. 6, pp. 168–176, Jun. 1975.
[10] C. P. Avratoglou, N. C. Voulgaris, and F. I. Ioannidou, “Analysis and design of a generalized Class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. CAS-36, no. 8, pp. 1068–1079, Aug. 1989.
[11] F. H. Raab and N. O. Sokal, “Transistor power losses in the Class E tuned power amplifier,” IEEE J. Solid-State Circuits, vol. SC-13, no. 6, pp. 912–914, Dec. 1978.
[12] A. Mazzanti, L. Larcher, R. Brama, and F. Svelto, “Analysis of reliability and power efficiency in cascode Class-E PAs,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1222–1229, May 2006
[13] D. J. Kessler and M. K. Kazimierczuk, “Power losses and efficiency of class E power amplifiers at any duty ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1675–1689, Sep. 2004.
[14] F. H. Raab and N. O. Sokal, “Transistor power losses in the class E tuned power amplifier,” IEEE Journal of Solid-State Circuits, vol. SC-13, NO. 6, pp. 912–914, Dec. 1999.
[15] M. Kazimierczuk, “Effects of the collector current fall time on the class E tuned power amplifier,” IEEE Journal of Solid-State Circuits, vol.SC-18, no. 2, pp. 181–193, Apr. 1983.
[16] P. Alinikula, K. Choi, and S. I. Long, “Design of class E power amplifier with nonlinear parasitic output capacitance,” IEEE Transactions on Circuits and Systems, vol. 46, no. 2, pp. 114–119, Feb. 1990
[17] D. K. Choi and S. I. Long, “The effect of transistor feedback capacitance in class–E power amplifiers,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 50, no. 12, pp. 1556–1559, Dec. 2003
[18] D. K. Choi and S. I. Long, “A physically based analytic model of FET class E power amplifiers-designing for maximum PAE,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1712–1720, Sep. 1999.
[19] P. Alinikula, K. Choi, and S. I. Long, “Design of class E power amplifier with nonlinear parasitic output capacitance,” IEEE Transactions on Circuits and Systems, vol. 46, no. 2, pp. 114–119, Feb. 1990
[20] D. K. Choi and S. I. Long, “The effect of transistor feedback capacitance in class–E power amplifiers,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 50, no. 12, pp. 1556–1559, Dec. 2003
[21] D. K. Choi and S. I. Long, “A physically based analytic model of FET class E power amplifiers-designing for maximum PAE,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1712–1720, Sep. 1999
[22] E. Hegazi, H. Sjoland and A. A. Abidi, "A filtering technique to lower LC oscillator phase noise," in IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec 2001.
[23]B. Sadhu, M. Ferriss, A. Natarajan, S. Yaldiz, J. O. Plouchart, A. Rylyakov, A. Valdes-Garcia, B. Parker, A. Babakhani, S. Reynolds, X. Li, L. Pileggi, R. Harjani, J. Tierno and D. Friedman, "A linearized, low-phase-noise VCO-based 25-GHz PLL with autonomic biasing", IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1138-1150, 2013
[24]Jing Zhang, Navneet Sharma, Kenneth K. O, "21.5-to-33.4 GHz Voltage-Controlled Oscillator Using NMOS Switched Inductors in CMOS", Microwave and Wireless Components Letters IEEE, vol. 24, pp. 478-480, 2014, ISSN 1531-1309
[25] J. F. Osorio, C. S. Vaucher, B. Huff, E. v. d. Heijden and A. de Graauw, "A 21.7-to-27.8GHz 2.6-degrees-rms 40Mw frequency synthesizer in 45nm CMOS for mm-Wave communication applications," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 278-280.
[26] Q. Wu et al., "Frequency Tuning Range Extension in LC-VCOs Using Negative-Capacitance Circuits," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 4, pp. 182-186, April 2013.
[27] G. Sauvage, "Phase Noise in Oscillators: A Mathematical Analysis of Leeson's Model," in IEEE Transactions on Instrumentation and Measurement, vol. 26, no. 4, pp. 408-410, Dec. 1977.

無法下載圖示 全文公開日期 2023/08/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE