簡易檢索 / 詳目顯示

研究生: 王德順
Te-shun Wang
論文名稱: 行動通信電波傳播之射線追蹤模擬方法
Ray Tracing Methods to Determine Wave Propagation for Mobile Communications
指導教授: 楊成發
Chang-fa Yang
口試委員: 李學智
Hsueh-jyh Li
鄭士康
Shyh-kang Jeng
唐震寰
Jenn-hwan Tarng
林丁丙
Ding-bing Lin
王蒼容
Chun-long Wang
馬自莊
Tzyh-ghuang Ma
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 行動通訊、基地台天線、時域有限差分法、射線追蹤法、電波傳播
外文關鍵詞: Base-station Antenna, Ray Tracing Method
相關次數: 點閱:271下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討都市地區之行動通信電波傳播特性,其中主要乃發展曲面物體之三維射線追蹤模擬程式與高效率之三維廣射線柱追蹤模擬方法,來分析行動通信基地台發射訊號在隧道內或建築物間的傳播特性,並進行現場實測,以供市區通訊場強涵蓋區預測及發射基地台規劃之用,來提高都市地區無線通訊系統的效率與功能。
    所發展之曲面物體三維射線追蹤模擬程式乃應用均勻幾何繞射理論與射線追蹤法建立電波傳播模擬程式,來計算曲面物體對無線電波的反射及繞射效應。為了驗證此射線追蹤模擬程式的正確性,本研究實地測量了GSM 900/1800基地台所發射的無線電波在曲面隧道內之傳播特性,並與模擬結果比較,兩者變化趨勢大致吻合,此外,也比較不同曲率半徑之弧形隧道與矩形隧道之電波傳播特性,以及各種頻率與不同隧道截面對場強分佈的影響。本研究所發展之模擬方法能正確地預測曲面隧道內之場強分佈,可供隧道內場強涵蓋區預測及基地台天線建置規劃之用。
    另外,本論文提出廣射線柱追蹤法,其中乃是追蹤整體射向建築物表面之輻射電波,有別於一般射線追蹤法將發射天線的輻射電波以多個小射線柱來模擬。對於市區行動通信基地台發射訊號傳播特性之模擬,可大為提升程式效率與實用性。因此,非常適合用來計算市區建築物體對無線通訊電波的多次反射及繞射效應,以分析行動通信在特定環境下之訊號分佈。本研究使用千分之一電子地圖並結合地理資訊系統應用程式,以取得市區建築物主體輪廓、行動通信基地台位置及電波場強分佈路徑資料,同時應用時域有限差分套裝模擬軟體XFDTD,計算了行動通信基地台天線之3D輻射場型與周遭電磁場強分佈特性並且實測之,其中所獲得基地台天線3D輻射場型可以提供射線追蹤程式進行模擬之用。此外,亦測量了都市地區GSM行動通信基地台發射訊號於所涵蓋區域街道上之分佈特性,而所得實測與模擬結果之變化趨勢大致吻合。


    In this dissertation, wave propagation properties in urban areas for mobile communications are studied. A ray-tracing program is developed to simulate waves reflected and diffracted from curved objects for evaluating field distributions in curved tunnels. Also, a high-efficient ray-tube tracing method is presented, which can be applied to determine waves propagating around buildings for signals from cellular base stations.
    A ray-tube tracing method to simulate waves propagating in curved road tunnels from base stations for mobile communications had been presented in this dissertation. Ray tubes are traced by including multiple reflections in the curved tunnels and diffractions from wedges of the tunnel structures, together with the direct path. To verify this ray-tube tracing approach, field measurements of 900/1800MHz signals in two curved road tunnels from GSM base stations were performed for comparisons with the ray-tube tracing simulations. By tracing ray tubes reflected and diffracted from the curved structures of the tunnels, the effects of the curvature on wave propagations in large guiding structures can be evaluated. Good agreements between simulations and measurements in the trends of the field distributions are obtained. A parametric study of the influence of the tunnel geometry and the signal frequency on the path loss is also presented by applying this ray-tube tracing method. Curved tunnels for different radii of curvature in the tunnel cross-section and horizontal plane, and also lengths of the curved part are compared, together with rectangular tunnels. Simulations of the field distribution over the cross-section of the curved tunnel away from the transmitting antenna are demonstrated too. The ray-tube tracing program can be applied to determine the deployment of the base-station antennas for improving signal coverage in tunnels, which may have curved structures.
    Besides, a global ray-tube tracing method is presented, which is to trace the global wave tubes instead of the many small ray tubes for simulating wave propagations in urban areas. Therefore, simulation efficiency can be improved significantly so that site-specific signal distributions in cities may be determined more easily and practically by considering multiple reflections and diffractions. To find building exterior geometries, base-station locations, and field distribution paths, 1:1000 digital city maps and a geographic information system software package are applied. Also, a finite difference time domain software package, XFDTD is used to evaluate the 3D antenna patterns and fields adjacent to the antenna, and measurements are performed too. Those 3D antenna patterns are needed in the ray-tracing simulations. The field measurements on streets in Taipei city are also performed, and the results are compared with those obtained from the global ray-tube tracing program. Good agreements between simulations and measurements in the trends of the field distributions are obtained.

    第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究內容 2 1.4 章節概述 3 第二章 射線追蹤法 5 2.1 前言 5 2.2 啟發式均勻幾何繞射理論 5 2.3 斜率繞射 9 2.4 三維曲面射線追蹤法 13 2.4.1 射線追蹤流程 14 2.4.2 直線與面的交點 15 2.4.3 射線柱通過接收區內的判斷方法 15 2.5 廣射線柱追蹤法 16 第三章 基地台天線之模擬與測量 27 3.1 前言 27 3.2 XFDTD套裝模擬軟體之使用 27 3.3 第二代行動通訊基地台天線模擬 29 3.4 第三代行動通訊基地台天線模擬 30 3.5 第三行動通訊基地台天線輻射場型之測量 32 第四章 基地台電波場強之模擬與測量 51 4.1 前言 51 4.2 2G基地台天線之3D輻射場型 51 4.3 2G基地台天線於不同架設方式之電場分佈模擬 51 4.3.1 天線架設於2m寬牆 52 4.3.2 天線架設於牆邊 52 4.3.3 天線半露於牆頂 53 4.3.4 天線架設屋頂 53 4.3.5 2G基地台天線於不同架設方式之電場分佈比較 53 4.4 3G基地台天線於不同架設位置之周遭場強測量 54 第五章 隧道內電波場強之分析 72 5.1 前言 72 5.2 洩波電纜與八木天線 72 5.3 隧道內場強分佈之分析 75 第六章 基地台四周電波場強分佈之模擬與測量 96 6.1 前言 96 6.2 電子地圖載入方法與數位資料檔說明 96 6.3 廣射線柱追蹤法與一般射線追蹤法模擬效率之比較 97 6.4 市區街道之電波場強分佈 98 6.5 建築物內之電波場強分佈 99 第七章 結論 112 7.1 總結 112 7.2 具體成果 112 7.3 未來研究方向 113 參考文獻 114 作者簡介 122

    [1] COST 231, “Urban transmission loss models for mobile radio in the 900 and 1800 MHz bands (Revision 2),” in COST 231 TD(90) 119 Rev. 2, The Hague, The Netherlands, Sept. 1991.
    [2] H. R. Anderson, “A ray-tracing propagation model for digital broadcast systems in urban areas,” IEEE Transactions on Broadcasting, Vol. 39, No. 3, Sept. 1993.
    [3] V. Erceg, A. J. Rustako, Jr., and R. S. Roman, “Diffraction around corners and its effects on the microcellular coverage area in urban and suburban environments at 900MHz, 2GHz, and 6 GHz,” IEEE Transactions on Vehicular Technology, Vol. 43, No. 3, pp. 762-766, Aug. 1994.
    [4] S. Y. Tan and H. S. Tan, “A microcellular communications propagation model based on the uniform Theory of diffraction and multiple Image Theory,” IEEE Transactions on Antennas and Propagation, Vol. 44, No. 10, pp. 1317-1326, Oct. 1996.
    [5] V. Erceg, S. J. Fortune, J. Ling, A. J. Rustako, Jr., and R. Valenzuela, “Comparison of a computer-based propagation tool prediction with experimental data collected in urban microcellular environments,” IEEE J. Select Areas Communication, Vol. 15, No. 4, pp. 677-684, May 1997.
    [6] C. F. Yang, B. C. Wu, and C. J. Ko, “A ray tracing method for modeling indoor wave propagation and penetration,” IEEE Transactions on Antennas and Propagation, Vol. 46, No. 6, pp. 907-919, June 1998.
    [7] S. Kim, B. J. Guarino, Jr., T. M. Willis, V. Erceg, S. J. Fortune, R. A. Valenzuela, L. W. Thomas, J. Ling and J. D. Moore, “Radio propagation measurements and prediction using three-dimension ray tracing in urban environments at 908MHz, and 1.9 GHz,” IEEE Transactions on Vehicular Technology, Vol. 48, No. 3, pp. 931-946, May 1999.
    [8] Chang-Fa Yang and Boau-Cheng Wu, "A Ray Tracing/PMM Hybrid Approach for Determining Wave Propagation through Periodic Structures," IEEE Transactions on Vehicular Technology, Vol.50, No.3, pp.791-795, May 2001.
    [9] Ph. Mariage, M. Lienard and P. Degauque, “Theoretical and experimental approach of the propagation of high frequency waves in road tunnels,” IEEE Transactions on Antennas and Propagation, Vol. 42, No. 1, pp. 75-81, Jan. 1994.
    [10] S. H. Chen and S. K. Jeng, “SBR image approach for radio wave propagation in tunnels with and without traffic,” IEEE Transactions on Vehicular Technology, Vol. 45, No.3, pp. 570-578, Aug. 1996.
    [11] J. S. Lamminmaki and J. J. A. Lempiainen, “Radio propagation characteristics in curved tunnels,” IEE Proceedings – Microwaves Antennas Propagation, Vol. 145, No. 4, pp. 327-331, Aug. 1998.
    [12] M. Nilsson, J. Slettenmark and C. Beckman, “Wave propagation in curved road tunnels”, IEEE Antenna and Propagation Society International Symposium, Vol. 4, pp. 1876-1879, 1998.
    [13] Y. P. Zhang and Y. Hwang, “Characterization of UHF radio propagation channels in tunnel environments for microcellular and sonal communications,” IEEE Transactions on Antennas and Propagation, Vol. 47, No. 1, pp. 283-296, Feb. 1998.
    [14] Y. P. Zhang and Y. Hwang, “Theory of the radio-wave propagation in railway tunnels”, IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, pp. 1027-1036, Aug. 1998.
    [15] Y. Hwang , Y. P. Zhang and R. G. Kouyoumjian, “Ray-optical prediction of radio-wave propagation characteristics in tunnel environments – part 1 : Theory”, IEEE Transactions on Antennas and Propagation, Vol. 46, No. 9, pp. 1328-1336, Sept. 1998.
    [16] Y. P. Zhang , Y. Hwang and R. G. Kouyoumjian, “Ray-optical prediction of radio-wave propagation characteristics in tunnel environments – part 2 : Analysis and Measurements”, IEEE Transactions on Antennas and Propagation, Vol. 46, No. 9, pp. 1337-1345, Sept. 1998.
    [17] M. Lienard and P. Degauque, “Propagation in wide tunnels at 2 GHz : a statistical analysis”, IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, pp. 1322-1328, Nov. 1998.
    [18] D. Didascalou, T. M. Schäfer, F. Weinmann and W. Wiesbeck, “Ray density normalization for ray-optical wave propagation modeling in arbitrarily shaped tunnels,” IEEE Transactions on Antennas and Propagation, Vol. 48, No. 9, pp. 1316-1325, September 2000.
    [19] D. Didascalou, J. Maurer and W. Wiesbeck, “Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies,” IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, pp. 1590-1596, November 2001.
    [20] F. S. de Adana, O. G. Blanco, I. G. Diego, J. P. Arriaga, and M. F. Cátedra, “Propagation Model Based on Ray Tracing for the Design of Personal Communication Systems in Indoor Environments,” IEEE Transactions on Vehicular Technology, Vol. 49, No. 6, pp. 2105-2112, Nov. 2000.
    [21] T. Kurner, D.J. Cichon, and W. Wiesbeck, “Concepts and Results for 3D Digital Terrain-Based Wave Propagation Models: An Overview,” IEEE Journal on Selected Areas in Communications, Vol.11, No.7, pp.1002-1012, September 1993.
    [22] H.R. Anderson, “A Ray-Tracing Propagation Model for Digital Broadcast Systems in Urban Areas,” IEEE Transactions on Broadcasting, Vol.39, No.3, September 1993.
    [23] H.L. Bertoni, W. Honcharenko, L.R. Maciel, and H.H. Xia, “UHF Propagation Prediction for Wireless Personal Communications,” Proceeding of the IEEE, Vol.82, No.9, September 1994.
    [24] S.Y. Tan and H.S. Tan, “A Microcellular Communications Propagation Model Based on the Uniform Theory of Diffraction and Multiple Image Theory,” IEEE Transactions on Antenna and Propagation, Vol.44, No.10, October 1996.
    [25] O. Landron, M.J. Feuerstein, and T.S. Rappaport, “A Comparison of Theoretical and Empirical Reflection Coefficients for Typical Exterior Wall Surfaces in a Mobile Radio Environment,” IEEE Transactions on Antennas and Propagation, Vol.44, No.3, March 1996.
    [26] J. Horikoshi, K. Tanaka, and T. Morinaga, “1.2 GHz band wave propagation measurements in concrete building for indoor radio communications,” IEEE Transactions on Vehicular Technology, Vol.VT-35, No.4, pp.146-151, November 1986.
    [27] H.W. Arnold, R.R. Murray, and D.C. Cox, “815 MHz radio attenuation measured within two commercial buildings,” IEEE Transactions on Antennas and Propagation, Vol.37, No.10, pp.1335-1339, October 1989.
    [28] R.J.C. Bultitude, S.A. Mahmoud, and W.A. Sullivan, “A comparison of indoor radio propagation characteristics at 910 MHz and 1.75 GHz,” IEEE Journal on Selected Areas in Communications, Vol.7, No.1, pp.20-30, January 1989.
    [29] T.S. Rappaport, “Indoor radio communications for factories of the future,” IEEE Communications Magazine, pp.15-24, May 1989.
    [30] T.S. Rappaport, S.Y. Seidel, and R. Singh, “900-MHz multipath propagation measurements for U.S. digital cellular radiotelephone,” IEEE Transactions on Vehicular Technology, Vol.39, No.2, pp.132-139, May 1990.
    [31] T.S. Rappaport, “Wireless personal communications trends and challenges,” IEEE Antennas and Propagation Magazine, Vol.33, No.5, pp.19-29, October 1991.
    [32] H. Suzuki, “A statistical model for urban radio propagation,” IEEE Transactions on Communications, Vol.COM-25, No.7, pp.673-680, July 1977.
    [33] T S. Rappaport, and C.D. Mcgillem, “UHF fading in factories,” IEEE Journal on Selected Areas in Communications, Vol.7, No.1, pp.40-48, January 1989.
    [34] T.S. Rappaport, “Characterization of UHF multipath radio channel in factory buildings,” IEEE Transactions on Antennas and Propagation, Vol.37, No.8, pp.1058-1069, August 1989.
    [35] J.F. Lafortune, and M. Lecours, “Measurement and modeling of propagation losses in a building at 900 MHz,” IEEE Transactions on Vehicular Technology, Vol.39, No.2, pp.101-108, May 1990.
    [36] T.S. Rappaport, S.Y. Seidel, and K. Takamizawa, “Statistical channel impulse response models for factory and open plan building radio communication system design,” IEEE Transactions on Communications, Vol.39, No.5, pp.794-807, May 1991.
    [37] S.Y. Seidel, and T.S. Rappaport, “914 MHz path loss prediction models for indoor wireless communications in multifloored buildings,” IEEE Transactions on Antennas and Propagation, Vol.40, No.2, pp.207-217, February 1992.
    [38] V.E.S. Ghassemzadeh, M. Taylor, D. Li, and D.L. Schilling, “Urban/Suburban out-of-sight propagation modeling,” IEEE Communications Magazine, pp.56-61, June 1992.
    [39] W. Honcharenko, H.L. Dailing, J. Qian, and H.D. Yee, “Mechanisms governing UHF propagation on single floors in modern office buildings,” IEEE Transactions on Vehicular Technology, Vol.41, No.4, pp.496-504, November 1992.
    [40] W. Honcharenko, H.L. Dailing, and J. Dailing, “Mechanisms governing propagation between different floors in buildings,” IEEE Transactions on Antennas and Propagation, Vol.41, No.6, pp.787-790, June 1993.
    [41] H. Kim and H. Ling, “Electromagnetic scattering from an inhomogeneous object by ray tracing,” IEEE Transactions on Antennas and Propagation, Vol.40, No.5, pp.517-525, May 1992.
    [42] Y.P. Zhang and Y. Hwang, “Characterization of UHF radio propagation channels in tunnel environments for microcellular and personal communications,” IEEE Transactions on Vehicular Technology, Vol.47, No.1, pp.283-296, Feb. 1998.
    [43] Z. Yun, M.F. Iskander, and Z. Zhang, “Fast ray tracing procedure using space division uniform rectangular grid,” Electronics Letters, Vol. 36, No. 10, pp. 895-897, May 2000.
    [44] F. A. Agelet, A. Formella, J.M.H. Rábanos, F.I.D. Vicente, and F.P. Fontán, “Efficient ray-tracing acceleration techniques for radio propagation modeling” IEEE Transactions on Vehicular Technology, Vol. 49, No. 6, pp. 2089-2104, Nov. 2000.
    [45] Z. Ji, B.-H. Li, H.-X Wang, H.-Y. Chen, and T.K. Sarkar, “Efficient ray-tracing methods for propagation prediction for indoor wireless communications,” IEEE Antennas and Propagation Magazine, Vol. 43, No. 2, pp. 41-49, Apr. 2001.
    [46] T. Kürner, D. J. Cichon, and W. Wiesbeck, “Concepts and Results for 3D Digital Terrain-Based Wave Propagation Models: An Overview,” IEEE Journal on Seleced. Areas in Communications, Vol. 11, No. 7, pp. 1002-1012, Sept. 1993.
    [47] M. Feistel, A. Baier, “Performance of a Three-Dimensional Propagation Model in Urban Environments,” Wireless: Merging onto the Information Superhighway, IEEE PIMRC'95, Vol. 2, pp. 402-407, Sept. 1995.
    [48] D. J. Cichon, W. Wiesbeck, “Ray Optical Wave Propagation Models for the Characterization of Radio Channels in Urban Outdoor and Indoor Environments,” Proceedings IEEE MILCOM '96, Vol. 3, pp. 718-722, Oct. 1996.
    [49] L. Piazzi, H. L. Bertoni, “Achievable Accuracy of Site-Specific Path-Loss Predictions in Residential Environments,” IEEE Transactions on Vehicular Technology, Vol. 48, No. 3, pp. 922-930, May 1999.
    [50] G. Liang, H. L. Bertoni, “A New Approach to 3-D Ray Tracing for Propagation Prediction in Cities,” IEEE Transactions on Antennas and Propagation, Vol. 46, No. 6, pp. 853-863, June 1998.
    [51] N. C. Goncalves, L. M. Correia, “A Propagation Model for Urban Microcellular Systems at the UHF Band,” IEEE Transactions on Vehicular Technology, Vol. 49, No. 4, pp. 1294-1302, July 2000.
    [52] M. F. Cátedra, J. Pérez, F. Saezde de Adana, and O. Gutierrez, “Efficient Ray-Tracing Techniques for Three-Dimensional Analyses of Propagation in Mobile Communications: Application to Picocell and Microcell Scenarios,” IEEE Antennas and Propagation Magazine, Vol. 40, No. 2, pp.15-28, April 1998.
    [53] Philip J. Joseph and Walter D. Burnside, A UTD Scattering Analysis of Pyramidal Absorber for Design of Compact Range Chambers, Technical Report 721929-11, The ElectroScience Laboratory, The Ohio State University, February 1990.
    [54] C.A. Balanis, Advanced Engineering Electromagnetics, John Wiley and Sons, New York, 1989, pp. 743-838.
    [55] 吳寶成,室內無線通信電波傳播之射線追蹤均勻幾何繞射模擬方法,台灣科技大學電機工程研究所碩士論文,民國八十七年六月。
    [56] R.J. Luebbers, “A Heuristic UTD Slope Diffraction Coefficient for Rough Lossy Wedges,” IEEE Transactions on Antennas and Propagation, Vol.37, No.2, pp.206-211, February 1989.
    [57] 張文曜,地面電台廣播與市區行動通訊之特定環境傳播模擬,台灣科技大學電機工程研究所博士論文,民國九十三年七月。
    [58] S.G. Andrew, An Introduction to Ray Tracing, Academic Press, San Diego, 1989.
    [59] http://www.kathrein-scala.com/
    [60] Z. Zaharis, E. Vafiadis, and J. N. Sahalos, “On the design of a dual-band base station wire antenna,” IEEE Mag. Antennas and Propagation., vol. 42, pp. 144-151, Dec. 2000.
    [61] XFDTD v5.3, User’s manual, REMCOM Corp., U.S.A.
    [62] 吳正雄,基地台天線之分析與改善,台灣科技大學電機工程研究所碩士論文,民國九十二年七月。
    [63] 王德順、吳正雄、楊成發,行動通訊基地台天線輻射場強分佈之模擬與測量,2004海峽兩岸三地無線電科技研討會,PD3-1~PD3-5。
    [64] http://www.rfsafetysolutions.com/ICNIRP_standard.htm
    [65] R.S. Elliott, Antenna Theory and Design.
    [66] D.K. Cheng, Field and Wave Electromagnetics, Addison-Wesley Publishing Company, New York, pp.614-621, 1989.
    [67] G.A. Thiele, “Analysis of Yagi-Uda Type antennas,” IEEE Transactions on Antennas and Propagation, Vol. 17, pp. 24-31, Jan. 1969.
    [68] Ying Wang, S. Safavi-Nacini, and S.K. Chaudhuri, “A combined ray tracing and FDTD method for modeling indoor radio wave propagation,” 1998 IEEE Antennas and Propagation Society International Symposium, Vol. 3, pp. 1668-1671, June 1998.
    [69] Ying Wang, S.K. Chaudhuri, and S. Safavi-Nacini, “A novel FDTD/ray-tracing analysis method for wave penetration through inhomogeneous walls,”2000 IEEE Antennas and Propagation Society International Symposium, Vol. 1, pp. 1126-1129, July 2000.
    [70] Ying Wang, S. Safavi-Naeini, and S.K. Chaudhuri, “A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation,” IEEE Transactions on Antennas and Propagation, Vol. 48, pp. 743-754, May 2000.
    [71] Ying Wang, S.K. Chaudhuri, and S. Safavi-Naeini, “An FDTD/ray-tracing analysis method for wave penetration through inhomogeneous walls,” IEEE Transactions on Antennas and Propagation, Vol. 50, pp. 1598-1604, Nov. 2002.

    QR CODE