簡易檢索 / 詳目顯示

研究生: Chi Van Nguye
Chi Van Nguyen
論文名稱: 合成金屬有機框架與衍生奈米結構材料應用於檢測與觸媒催化
Synthesis of Metal-Organic Frameworks (MOFs) and MOF-Derived Nanostructured materials for catalysis and sensing application
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江志強
Jiang Jyh Chiang
Toyoko Imae
Toyoko Imae
吳紀聖
Jeffrey Chi-Sheng Wu
游文岳
Wen-Yueh Yu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 164
中文關鍵詞: Metal-Organic Frameworks (MOFs)Catalysis applicationSensing applicationMOF-derived nanostructured materials
外文關鍵詞: Metal-Organic Frameworks (MOFs), Catalysis application, Sensing application, MOF-derived nanostructured materials
相關次數: 點閱:356下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Abstract in Chinese i Abstract in English ii Acknowledgment iv Publications v Content vii Abbreviations x Figures and Tables xi Chapter one: Introduction 1.1. Metal-Organic Frameworks (MOFs) 1 1.1.1 Synthesis of MOFs 2 1.1.2 MOFs properties 3 1.2.3 MOFs in applications 5 1.2. MOF-derived functional materials 9 Chapter two: Material and analytical apparatuses 2.1. Materials 12 2.2. Analytical instruments 12 Chapter three: Synergistic Effect of Metal-Organic Framework-Derived Boron and Nitrogen Heteroatom-doped Three-Dimensional Porous Carbons for Precious-Metal-Free Catalytic Reduction of Nitroarenes 3.1. Introduction 15 3.2. Experiments 18 3.3. Results and Discussion 21 3.3.1. Characteristics of synthesized materials 21 3.3.2. Studies of catalytic 4-nitrophenol (4-NP) reduction into 4-aminophenol (4-AP) 27 3.3.3. Density functional theory (DFT) calculation 34 3.3.4. The reduction reaction of various nitroarenes over B-NPC-1200 catalyst 37 Chapter four: MIL-53-NH2-derived carbon-Al2O3/C composites supported Ru catalyst for effective hydrogenation of levulinic acid to γ-valerolactone under ambient conditions 4.1. Introduction 40 4.2. Experiments 43 4.3. Results and Discussion 45 4.3.1. Characteristics of as-synthesized catalyst 45 4.3.2. Catalytic studies 47 Chapter five: Water- and Thermal-Stable Silver-based Photoluminescent Metal-Organic Framework for Highly Selective Lead Ion Sensing 5.1. Introduction 55 5.2. Experiments 56 5.3. Results and Discussion 58 5.3.1. Characteristics of synthesized materials 58 5.3.2. Lead ion detection 61 Chapter Six: Influence of ligands in metal-organic framework on optical properties and selective metal ion sensing 6.1. Introduction 67 6.2. Experiments 69 6.3. Results and Discussion 70 6.3.1. Characteristics of synthesized Ag-based MOFs 70 6.3.2. Detection of metal ions using these synthesized Ag-based MOFs 74 6.3.3. Effect of ligands in the Ag-based MOFs on metal ions sensing 79 Chapter seven: Conclusions and Perspectives 83 References 86 Appendix

1. Kitagawa, S.; Kitaura, R.; Noro, S.-i., Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43, 2334-2375.
2. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673-674.
3. Fe´rey, G. r., Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008, 37, 191-214.
4. Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y., Mesoporous metal–organic framework materials. Chem. Soc. Rev. 2012, 41, 1677-1695.
5. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T., Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105-1125.
6. IV, J. J. P.; Perman, J. A.; Zaworotko, M. J., Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocksw. Chem. Soc. Rev. 2009, 38, 1400-1417.
7. Tranchemontagne, D. J.; S, J. L. M.-C.; O’Keeffe, M.; Yaghi, O. M., Secondary building units, nets and bonding in the chemistry of metal–organic frameworksw. Chem. Soc. Rev. 2009, 38, 1257-1283.
8. Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; III, T. G.; Boscha, M.; Zhou, H.-C., Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561-5593.
9. Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M., Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Acc. Chem. Res. 2001, 34, 319-330.
10. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933-969.
11. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J., Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 2006, 16, 626-636.
12. METAL-ORGANIC FRAMEWORKS: Design and Application. John Wiley & Sons, Inc.: Canada, 2010; p 313.
13. Huang, Y.-Q.; Ding, B.; Song, H.-B.; Zhao, B.; Ren, P.; Cheng, P.; Wang, H.-G.; Liao, D.-Z.; Yan, S.-P., A novel 3D porous metal–organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths. Chem. Commun. 2006, 4906-4908.
14. Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhangc, Y.-Q.; Guo, G., Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci. 2014, 7, 2831-2867.
15. Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houka, R. J. T., Luminescent metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.
16. Ahmed, I.; Jhung, S. H., Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today 2014, 17, 136-146.
17. Wang, B.; Xie, L.-H.; Wang, X.; Liu, X.-M.; Li, J.; Li, J.-R., Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Ener. Environ. 2018, 3, 191-228.
18. Konstas, K.; Osl, T.; Yang, Y.; Batten, M.; Burke, N.; Hill, A. J.; Hill, M. R., Methane storage in metal organic frameworks. J. Mater. Chem. 2012, 22, 16698-16708.
19. Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M., Exceptional H2 Saturation Uptake in Microporous Metal-Organic Frameworks. J. Am. Chem. Soc. 2006, 128, 3494-3495.
20. Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M., High H2 Adsorption in a Microporous Metal–Organic Framework with Open Metal Sites. Angew. Chem. Int. Ed. 2005, 44, 4745-4749.
21. Wen, J.; Fang, Y.; Zeng, G., Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metaleorganic frameworks: A review of studies from the last decade. Chemosphere 2018, 201, 627-643.
22. Jiang, J.; Yaghi, O. M., Brønsted Acidity in Metal−Organic Frameworks. Chem. Rev. 2015, 115, 6966-6997.
23. Dhakshinamoorthy, A.; Asiric, A. M.; Garcia, H., Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chem. Soc. Rev. 2015, 44, 1922-1947.
24. Dhakshinamoorthy, A.; Garcia, H., Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem. Soc. Rev. 2012, 41, 5262-5284.
25. Luo, H.-B.; Ren, Q.; Wang, P.; Zhang, J.; Wang, L.; Ren, X.-M., High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton-Conducting MOF-808. ACS Appl. Mater. Interfaces 2019, 11, 9164-9171.
26. Li, X.; Liu, Y.; Wang, J.; Gascon, J.; Li, J.; Bruggen, B. V. d., Metal–organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 2017, 46, 7124-7144.
27. Zacher, D.; Shekhah, O.; ll, C. W.; Fischer, R. A., Thin films of metal–organic frameworksw. Chem. Soc. Rev. 2009, 38, 1418-1429.
28. Wang, L.; Zheng, M.; Xie, Z., Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 2018, 6, 707-717.
29. Truong, T.; Nguyen, C. V.; Truong, N. T.; Phan, N. T. S., Ligand-free N-arylation of heterocycles using metal–organic framework [Cu(INA)2] as an efficient heterogeneous catalyst. RSC Adv. 2015, 5, 107547-107556.
30. Khazalpour, S.; Safarifard, V.; Morsali, A.; Nematollahi, D., Electrochemical synthesis of pillared layer mixed ligand metal–organic framework: DMOF-1–Zn. RSC Adv. 2015, 5, 36547-36551.
31. Jhung, S. H.; Lee, J.-H.; Chang, J.-S., Microwave Synthesis of a Nanoporous Hybrid Material, Chromium Trimesate. Bull. Korean Chem. Soc. 2005, 26, 880-881.
32. Khan, N. A.; Jhung, S. H., Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3 under Ultrasound. Bull. Korean Chem. Soc. 2009, 30, 2921-2926.
33. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8, 211-214.
34. Torad, N. L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naitoa, M.; Yamauchi, Y., Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 2013, 49, 2521-2523.
35. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Kevin C.-W. Wu; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. J. Am. Chem. Soc. 2015, 137, 4276-4279.
36. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939-943.
37. Surble´, S.; Millange, F.; Serre, C.; Fe´reya, G. r.; Walton, R. I., An EXAFS study of the formation of a nanoporous metal–organic framework: evidence for the retention of secondary building units during synthesis. Chem. Commun. 2006, 1518-1520.
38. Ahnfeldt, T.; Moellmer, J.; Guillerm, V.; Staudt, R.; Serre, C.; Stock, N., High-Throughput and Time-Resolved Energy-Dispersive X-Ray Diffraction (EDXRD) Study of the Formation of CAU-1-(OH)2: Microwave and Conventional Heating. Chem. Eur. J. 2011, 17, 6462-6468.
39. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M., Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329, 424-428.
40. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; OÕKeeffe, M.; Yaghi1, O. M., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469-472.
41. Chae, H. K.; Siberio-Pe´rez, D. Y.; Jaheon Kim1, Y. G.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M., A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523-527.
42. Nguyen, L. T. L.; Nguyen, C. V.; Dang, G. H.; Le, K. K. A.; Phan, N. T. S., Towards applications of metal–organic frameworks in catalysis: Friedel–Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst. J. Mol. Catal. A: Chemical 2011, 349, 28-35.
43. Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M., Hydrogen Sorption in Functionalized Metal-Organic Frameworks. J. Am. Chem. Soc. 2004, 126, 5666-5667.
44. Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T., Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal-Organic Framework Materials. J. Am. Chem. Soc. 2009, 131, 458-460.
45. Férey, G.; Serre, C.; Mellot-Draznieks, C.; FranckMillange; Surble´, S.; Dutour, J.; Margiolaki, I., A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angew. Chem. Int. Ed. 2004, 43, 9296-6301.
46. Furukawa, H.; Gándara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water Adsorption in Porous Metal−Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369-4381.
47. Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D., A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150.
48. Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M., Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327, 846-850.
49. Zhang, Y.-B.; Furukawa, H.; Ko, N.; Nie, W.; Park, H. J.; Okajima, S.; Cordova, K. E.; Deng, H.; Kim, J.; Yaghi, O. M., Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal-Organic Framework-177. J. Am. Chem. Soc. 2015, 137, 2641-2650.
50. Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K., Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem. Soc. Rev. 2014, 43, 5896-5912.
51. Evans, J. D.; Sumby, C. J.; Doonan, C. J., Post-synthetic metalation of metal–organic frameworks. Chem. Soc. Rev. 2014, 43, 5933-5951.
52. DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y.-g.; Walton, K. S., Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 2013, 1, 5642-5650.
53. Tran, U. P. N.; Le, K. K. A.; Phan, N. T. S., Expanding Applications of Metal-Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction. ACS. Catal. 2011, 1, 120-127.
54. Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C., Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, 1704303.
55. Millward, A. R.; Yaghi, O. M., Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. J. Am. Chem. Soc. 2005, 127, 17998-17999.
56. Cavenati, S.; Grande, C. A.; Rodrigues, A. r. E., Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. J. Chem. Eng. Data 2004, 49, 1095-1101.
57. Himeno, S.; Komatsu, T.; Fujita, S., High-Pressure Adsorption Equilibria of Methane and Carbon Dioxide on Several Activated Carbons. J. Chem. Eng. Data 2005, 50, 369-376.
58. Trickett, C. A.; Helal, A.; Al‑Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M., The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.
59. He, Y.; Zhou, W.; Qian, G.; Chen, B., Methane storage in metal–organic frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678.
60. Phan, N. T. S.; Le, K. K. A.; Phan, T. D., MOF-5 as an efficient heterogeneous catalyst for Friedel–Crafts alkylation reactions. Appl. Catal. A: General 2010, 382, 246-253.
61. Nguyen, L. T. L.; Le, K. K. A.; Truong, H. X.; Phan, N. T. S., Metal–organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catal. Sci. Technol. 2012, 2, 521-528.
62. Phan, N. T. S.; Nguyen, T. T.; Ho, P.; Nguyen, K. D., Copper-Catalyzed Synthesis of a-Aryl Ketones by Metal–Organic Framework MOF-199 as an EfficientHeterogeneous Catalyst. ChemCatChem 2013, 5, 1822-1831.
63. Truong, T.; Nguyen, C. K.; Tran, T. V.; Nguyen, T. T.; Phan, N. T. S., Nickel-catalyzed oxidative coupling of alkynes and arylboronic acids using the metal–organic framework Ni2(BDC)2(DABCO) as an efficient heterogeneous catalyst. Catal. Sci. Technol. 2014, 4, 1276-1285.
64. Phan, N. T. S.; Nguyen, T. T.; Nguyen, C. V.; Nguyen, T. T., Ullmann-type coupling reaction using metal-organic framework MOF-199 as an efficient recyclable solid catalyst. Appl. Catal. A: General 2013, 457, 69-77.
65. Silva, C. G.; Corma, A.; García, H., Metal–organic frameworks as semiconductors. J. Mater. Chem. 2010, 20, 3141-3156.
66. Hu, Z.; Deibert, B. J.; Li, J., Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840.
67. Cui, Y.; Yue, Y.; Qian, G.; Chen, B., Luminescent Functional Metal-Organic Frameworks. Chem. Rev. 2012, 112, 1126-1162.
68. Xiao, Y.; Cui, Y.; Zheng, Q.; Xiang, S.; Qian, G.; Chen, B., A microporous luminescent metal–organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution. Chem. Commun. 2010, 46, 5503-5505.
69. Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B., A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions. J. Am. Chem. Soc. 2008, 130, 6718-6719.
70. Takashima, Y.; Martínez, V. M.; Furukawa, S.; Mio Kondo4, S. S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S., Molecular decoding using luminescence from an entangled porous framework. Nat. Comm. 2011, 2, 168.
71. Dang, S.; Zhu, Q.-L.; Xu, Q., Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 2018, 3, 17075.
72. Yang, L.; Zeng, X.; Wang, W.; Cao, D., Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Adv. Funct. Mater. 2018, 1704537.
73. Yap, M. H.; Fow, K. L.; Chen, G. Z., Synthesis and applications of MOF-derived porous nanostructures. Green Ener. Environ. 2017, 2, 218-245.
74. Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q., Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 2016, 8, 718-724.
75. Guo, W.; Sun, W.; Wang, Y., Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted MetalOrganic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage. ACS Nano 2015, 9, 11462-11471.
76. Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y., Thermal Conversion of Core−Shell Metal−Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. J. Am. Chem. Soc. 2015, 137, 1572-1580.
77. Ji, S.; Chen, Y.; Fu, Q.; Chen, Y.; Dong, J.; Chen, W.; Li, Z.; Wang, Y.; Gu, L.; He, W.; Chen, C.; Peng, Q.; Huang, Y.; Duan, X.; Wang, D.; Draxl, C.; Li, Y., Confined Pyrolysis within Metal−Organic Frameworks To Form Uniform Ru3 Clusters for Efficient Oxidation of Alcohols. J. Am. Chem. Soc. 2017, 139, 9795-9798.
78. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q., Metal-Organic Framework as a Template for Porous Carbon Synthesis. J. Am. Chem. Soc. 2008, 130, 5390-5391.
79. Nguyen, C. V.; Liao, Y.-T.; Kang, T.-C.; Chen, J. E.; Yoshikawa, T.; Nakasaka, Y.; Masudab, T.; Kevin C.-W. Wu, A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem. 2016, 18, 5957-5961.
80. Wang, Y.; Tao, L.; Xiao, Z.; Chen, R.; Jiang, Z.; Wang, S., 3D Carbon Electrocatalysts In Situ Constructed by Defect-Rich Nanosheets and Polyhedrons from NaCl-Sealed Zeolitic Imidazolate Frameworks. Adv. Funct. Mater. 2018, 28, 1705356.
81. Radhakrishnan, L.; Reboul, J.; Furukawa, S.; Srinivasu, P.; Kitagawa, S.; Yamauchi, Y., Preparation of Microporous Carbon Fibers through Carbonization of Al-Based Porous Coordination Polymer (Al-PCP) with Furfuryl Alcohol. Chem. Mater. 2011, 23, 1225-1231.
82. Liu, B.; Zhang, X.; Shioyama, H.; Mukai, T.; Sakai, T.; Xu, Q., Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J. Powder Sour. 2010, 195, 857-861.
83. Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.-P., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Comm. 2011, 2, 416.
84. Zhang, L.; Shi, L.; Huang, L.; Zhang, J.; Gao, R.; Zhang, D., Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3-xO4 Nanocages Derived from Metal−Organic Frameworks. ACS. Catal. 2014, 4, 1753-1763.
85. Wang, X.; Chen, W.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H.; Dong, J.; Zheng, L.; Yan, W.; Zheng, X.; Li, Z.; Wang, X.; Yang, J.; He, D.; Wang, Y.; Deng, Z.; Wu, Y.; Li, Y., Uncoordinated Amine Groups of Metal−Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. J. Am. Chem. Soc. 2017, 139, 9419-9422.
86. Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M., MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 2017, 358, 326-332.
87. Xu, X.; Cao, R.; Jeong, S.; Cho, J., Spindle-like Mesoporous α‑Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Lett. 2012, 12, 4988-4991.
88. Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. D., Formation of Fe2O3 Microboxes with Hierarchical Shell Structures from Metal−Organic Frameworks and Their Lithium Storage Properties. J. Am. Chem. Soc. 2012, 134, 17388-17391.
89. Su, P.; Xiao, H.; Zhao, J.; Yao, Y.; Shao, Z.; Li, C.; Yang, Q., Nitrogen-doped carbon nanotubes derived from Zn–Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem. Sci. 2013, 4, 2941-2946.
90. Wu, H. B.; Wei, S.; Zhang, L.; Xu, R.; Hng, H. H.; Lou, X. W. D., Embedding Sulfur in MOF-Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries. Chem. Eur. J. 2013, 19, 10804-10808.
91. Banerjee, A.; Gokhale, R.; Bhatnagar, S.; Jog, J.; Bhardwaj, M.; Lefez, B.; Hannoyerc, B.; Ogale, S., MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J. Mater. Chem. 2012, 22, 19694-19699.
92. Gadipelli, S.; Guo, Z. X., Tuning of ZIF-Derived Carbon with High Activity, Nitrogen Functionality, and Yield – A Case for Superior CO2 Capture. ChemSusChem 2015, 8, 2123-2132.
93. Hou, Y.; Huang, T.; Wen, Z.; Mao, S.; Cui, S.; Chen, J., Metal−Organic Framework-Derived Nitrogen-Doped Core-Shell-Structured Porous Fe/Fe 3 C@C Nanoboxes Supported on Graphene Sheets for Effi cient Oxygen Reduction Reactions. Adv. Energy Mater. 2014, 4, 1400337.
94. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z., Metal−Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. J. Am. Chem. Soc. 2014, 136, 13925-13931.
95. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X., A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nature Energy 2016, 1, 15006.
96. Zhang, J.; Fang, J.; Han, J.; Yan, T.; Shi, L.; Zhang, D., N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization. J. Mater. Chem. A 2018, 6, 15245-15252.
97. Wang, X.; Huang, F.; Rong, F.; He, P.; Que, R.; Jiang, S. P., Unique MOF-derived hierarchical MnO2 nanotubes@NiCo-LDH/CoS2 nanocage materials as high performance supercapacitors. J. Mater. Chem. A 2019, 7, 12018-12028.
98. Zhong, B.; Zhang, L.; Yu, J.; Fan, K., Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries. J. Colloid Interface Sci. 2019, 546, 113-120.
99. Xiaa, J.; Heb, G.; Zhang, L.; Sun, X.; Wang, X., Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. Appl. Catal. B: Environmental 2016, 180, 408-415.
100. Sahiner, N.; Sema Yildiz; Al-Lohedana, H., The resourcefulness of p(4-VP) cryogels as template for in situ nanoparticle preparation of various metals and their use in H2 production, nitrocompound reduction and dyedegradation. Appl. Catal. B: Environmental 2015, 166, 145-154.
101. Mitchell, S. C.; R. H. Waring, In Ullmanns Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim, Germany: 2000.
102. Yang, F.; Chi, C.; Wang, C.; Wang, Y.; Li, Y., High graphite N content in nitrogen-doped graphene as an efficient metal-free catalyst for reduction of nitroarenes in water. Green Chem. 2016, 18, 4254-4262.
103. Cai, S.; Duan, H.; Rong, H.; Wang, D.; Li, L.; He, W.; Li, Y., Highly Active and Selective Catalysis of Bimetallic Rh3Ni1 Nanoparticles in the Hydrogenation of Nitroarenes. ACS Catal. 2013, 3, 608-612.
104. Saha, A.; Ranu, B., Highly Chemoselective Reduction of Aromatic Nitro Compounds by Copper Nanoparticles/ Ammonium Format. J. Org. Chem. 2008, 73, 6867-6870.
105. Junge, K.; Wendt, B.; Shaikh, N.; Beller, M., Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes. Chem. Commun. 2010, 46, 1769-1771.
106. Wienh€ofer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M., General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. J. Am. Chem. Soc. 2011, 133, 12875-12879.
107. Blaser, H.-U.; Steiner, H.; Studer, M., Selective Catalytic Hydrogenation of Functionalized Nitroarenes: An Update. ChemCatChem 2009, 1, 210-221.
108. Kundu, S.; Lau, S.; Liang, H., Shape-Controlled Catalysis by Cetyltrimethylammonium Bromide Terminated Gold Nanospheres, Nanorods, and Nanoprisms. J. Phys. Chem. C 2009, 113, 5250-5156.
109. Sarmah, P. P.; Dutta, D. K., Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0 -nanoparticles stabilized on modified Montmorillonite clay. Green Chem. 2012, 14, 1086-1093.
110. Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P., Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067-7098.
111. Pumera, M., Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146-4157.
112. Dong, X.-C.; Xu, H.; Wang, X.-W.; Huang, Y.-X.; Chan-Park, M. B.; Zhang, H.; Wang, L.-H.; Huang, W.; Chen, P., 3D GrapheneCobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano 2012, 6, 3206-3213.
113. Yong, Y.-C.; Dong, X.-C.; Chan-Park, M. B.; Song, H.; Chen, P., Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano 2012, 6, 2394-2400.
114. Jeon, I.-Y.; Zhang, S.; Zhang, L.; Choi, H.-J.; Seo, J.-M.; Xia, Z.; Dai, L.; Baek, J.-B., Edge-Selectively Sulfurized Graphene Nanoplatelets as Effi cient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Adv. Mater. 2013, 25, 6238-6145.
115. Rani, P.; Jindal, V. K., Designing band gap of graphene by B and N dopant atoms. RSC Adv. 2013, 3, 802-811.
116. Li, J.-C.; Hou, P.-X.; Liu, C., Heteroatom-Doped Carbon Nanotube and Graphene-Based Electrocatalysts for Oxygen Reduction Reaction. Small 2017, 13, 1702002.
117. Wang, S.; Iyyamperumal, E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L., Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen. Angew. Chem. Int. Ed. 2011, 50, 11756-11760.
118. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z., Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3100-3116.
119. Umrao, S.; Gupta, T. K.; Kumar, S.; Singh, V. K.; Sultania, M. K.; Jung, J. H.; Oh, I.-K.; Srivastava, A., Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Appl. Mater. Interfaces 2015, 7, 19831-19842.
120. Choi, C. H.; Chung, M. W.; Kwon, H. C.; Park, S. H.; Woo, S. I., B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media†. J. mater. Chem. A 2013, 1, 3694-3699.
121. Wu, Z.-S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X.; Müllen, K., Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. Adv. Mater. 2012, 24, 5130-5135.
122. Qie, L.; Lin, Y.; Connell, J. W.; Xu, J.; Dai, L., Highly Rechargeable Lithium-CO2 Batteries with a Boron and Nitrogen-Codoped Holey-Graphene Cathode. Angew. Chem. Int. Ed. 2017, 56, 6970-6974.
123. Wei, J.; Hu, Y.; Liang, Y.; Kong, B.; Zhang, J.; Song, J.; Bao, Q.; Simon, G. P.; Jiang, S. P.; Wang, H., Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for EfficientOxygen Reduction. Adv. Funct. Mater. 2015, 25, 5768-5777.
124. Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J., cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. 2014, 4, 15-25.
125. Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H. T.; Lebègue, S.; Paier, J.; Vydrov, O. A.; Ángyán, J. G., Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 2009, 79, 155107.
126. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
127. VandeVondele, J.; Hutter, J., Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.
128. Antropov, V. P.; Katsnelson, M. I.; Harmon, B. N., Spin dynamics in magnets: Equation of motion and finite temperature effect. Phys. Rev. B 1996, 54, 1703-171.
129. Hartwigsen, C.; Goedecker, S.; Hutter, J., Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641-3662.
130. Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N., O2 Reduction on Graphite and Nitrogen-Doped Graphite: Experiment and Theory. J. Phys. Chem. B 2006, 110, 1787-1793.
131. Zheng, F.; Yang, Y.; Chen, Q., High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Comm. 2014, 5, 6261.
132. Tong, Y.; Chen, P.; Zhou, T.; Xu, K.; Chu, W.; Wu, C.; Xie, Y., A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,N-Decorated Graphene. Angew. Chem. Int. Ed. 2017, 56, 7121-7125.
133. Baik, S.; Lee, J. W., Effect of boron–nitrogen bonding on oxygen reduction reaction activity of BN Co-doped activated porous carbons. RSC Adv. 2015, 5, 24661-24669.
134. Chiang, W.-H.; Chen, G.-L.; Hsieh, C.-Y.; Lo, S.-C., Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties. RSC Adv. 2015, 5, 97579-97588.
135. Perrone, A.; Caricato, A. P.; Luches, A.; Dinescu, M.; Ghica, C.; Sandu, V.; Andrei, A., Boron carbonitride films deposited by pulsed laser ablation. Appl. Surf. Sci. 1998, 133, 239-242.
136. Mannan, M. A.; Nagano, M.; Shigezumi, K.; Kida, T.; Hirao, N.; Baba, Y., Characterization of Boron Carbonitride (BCN) Thin Films Deposited by Radiofrequency and Microwave Plasma Enhanced Chemical Vapor Deposition. Am. J. Appl. Sci. 2007, 5, 736-741.
137. Srinivas, G.; Zhu, Y.; Piner, R.; Skipper, N.; Ellerby, M.; Ruoff, R., Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 2010, 48, 630-635.
138. Hassan, F. M.; Chabot, V.; Li, J.; Kim, B. K.; Ricardez-Sandoval, L.; Yu, A., Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. J. Mater. Chem. A 2013, 1, 2904-2912.
139. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2008, 8, 36-41.
140. Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.
141. Kong, X.-k.; Sun, Z.-y.; Chen, M.; Chen, C.-l.; Chen, Q.-w., Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ. Sci. 2013, 6, 3260-3266.
142. Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M., Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels. Chem. Mater. 2007, 19, 1062-1069.
143. Divband, B.; Khatamian, M.; Eslamian, G. R. K.; Darbandi, M., Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation. Appl. Surf. Sci. 2013, 284, 80-86.
144. Adelroth, P.; Sigurdson, H.; Hallen, S.; Brzezinski, P., Kinetic coupling between electron and proton transfer in cytochrome c oxidase: Simultaneous measurements of conductance and absorbance changes. Proc. Natl. Acad. Sci. USA 1996, 93, 12292-12297.
145. Nitzan, A., A Relationship between Electron-Transfer Rates and Molecular Conduction. J. Phys. Chem. A 2001, 105, 2677-2679.
146. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B: Environmental 2009, 88, 1-24.
147. Gounder, R., Hydrophobic microporous and mesoporous oxides as Brønsted and Lewis acid catalysts for biomass conversion in liquid water. Catal. Sci. Technol. 2014, 4, 2877-2886.
148. Climent, M. J.; Corma, A.; Iborra, S., Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 2014, 16, 516-547.
149. Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sa´daba, I.; Granados, M. L. p., Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144-1189.
150. Gallezot, P., Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538-1558.
151. Matsagar, B. M.; Hossain, S. A.; Islam, T.; Alamri, H. R.; Alothman, Z. A.; Yamauchi, Y.; Dhepe, P. L.; Wu, K. C.-W., Direct Production of Furfural in One-pot Fashion from Raw Biomass Using Brønsted Acidic Ionic Liquids. Sci. Rep. 2017, 7, 13508.
152. Liao, Y.-T.; Matsagar, B. M.; Kevin, C.-W. Wu, Metal−Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustainable Chem. Eng. 2018, 6, 13628-13643.
153. Sang, B.; Li, J.; Tian, X.; Yuan, F.; Zhu, Y., Selective aerobic oxidation of the 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold nanoparticles supported on graphitized carbon: Study on reaction pathways. Mol. Catal. 2019, 470, 67-74.
154. Matsagar, B. M.; Munshi, M. K.; Kelkar, A. A.; Dhepe, P. L., Conversion of concentrated sugar solutions into 5-hydroxymethyl furfural and furfural using Brönsted acidic ionic liquids. Catal. Sci. Technol. 2015, 5, 5086-5090.
155. Ortiz-Cervantes, C.; Flores-Alamo, M.; García, J. J., Hydrogenation of Biomass-Derived Levulinic Acid into γ‑Valerolactone Catalyzed by Palladium Complexes. ACS Catal. 2015, 5, 1424-1431.
156. Zhu, S.; Xue, Y.; Guo, J.; Cen, Y.; Wang, J.; Fan, W., Integrated Conversion of Hemicellulose and Furfural into γ‑Valerolactone over Au/ZrO2 Catalyst Combined with ZSM‑5. ACS Catal. 2016, 6, 2035-2042.
157. Bui, L.; Luo, H.; Gunther, W. R.; Romn-Leshkov, Y., Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of g-Valerolactone from Furfural. Angew. Chem. Int. Ed. 2013, 52, 8022-8025.
158. Deng, L.; Li, J.; Lai, D.-M.; Fu, Y.; Guo, Q.-X., Catalytic Conversion of Biomass-Derived Carbohydrates into g-Valerolactone without Using an External H2 Supply. Angew. Chem. Int. Ed. 2009, 48, 6529-6532.
159. Wright, W. R. H.; Palkovits, R., Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to g-Valerolactone. ChemSusChem 2012, 5, 1657-1667.
160. (PNNL), P. N. N. L.; (NREL, N. R. E. L. Top Value Added Chemicals From Biomass; U.S. Department of Energy, 2004; p 52.
161. Muranaka, Y.; Suzuki, T.; Sawanishi, H.; Hasegawa, I.; Mae, K., Effective Production of Levulinic Acid from Biomass through Pretreatment Using Phosphoric Acid, Hydrochloric Acid, or Ionic Liquid. Ind. Eng. Chem. Res. 2014, 53, 11611-11621.
162. Zhang, Z., Synthesis of g-Valerolactone from Carbohydrates and its Applications. ChemSusChem 2016, 9, 156-171.
163. Song, S.; Yao, S.; Cao, J.; Di, L.; Wu, G.; Guan, N.; Li, L., Heterostructured Ni/NiO composite as a robust catalyst for thehydrogenation of levulinic acid to -valerolactone. Appl. Catal. B: Environmental 2017, 217, 115-124.
164. Elif I. Gurbuz, Jean Marcel R. Gallo, David Martin Alonso, Stephanie G. Wettstein, Wee Y. Lim, and James A. Dumesic, Angew. Chem. Int. Ed. 2013, 52, 1270 -1274.
165. Rodenas, Y.; Mariscal, R.; Fierro, J. L. G.; Alonso, D. M.; Dumesic, J. A.; Granados, M. L., Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of γ-valerolactone. Green Chem. 2018, 20, 2845-2856.
166. Fábos, V. r.; Mika, L. s. T.; Horváth, I. n. T., Selective Conversion of Levulinic and Formic Acids to γ‑Valerolactone with the Shvo Catalyst. Organometallics 2014, 33, 181-187.
167. Delhomme, C.; Schaper, L.-A.; Zhang-Preße, M.; Raudaschl-Sieber, G.; Weuster-Botz, D.; Kühn, F. E., Catalytic hydrogenation of levulinic acid in aqueous phase. J. Organometallic Chem. 2013, 724, 297-299.
168. Hengst, K.; Schubert, M.; Carvalho, H. W. P.; Lu, C.; Kleist, W.; Grunwaldt, J.-D., Synthesis of -valerolactone by hydrogenation of levulinic acid over supported nickel catalysts. Appl. Catal. A: General 2015, 502, 18-26.
169. Tan, J.; Cui, J.; Deng, T.; Cui, X.; Ding, G.; Zhu, Y.; Li, Y., Water-Promoted Hydrogenation of Levulinic Acid to g-Valerolactone on Supported Ruthenium Catalyst. ChemCatChem 2015, 7, 508-512.
170. Xiao, C.; Goh, T.-W.; Qi, Z.; Goes, S.; Brashler, K.; Perez, C.; Huang, W., Conversion of Levulinic Acid to γ‑Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts. ACS Catal. 2016, 6, 593-599.
171. Chalid, M., A.A. Broekhuis, and H.J. Heeres, Experimental and kinetic modeling studies on the biphasic hydrogenation of levulinic acid to γ-valerolactone using a homogeneous water-soluble Ru–(TPPTS) catalyst. J. Mol. Catal. A: Chemical, 2011. 341. 14-21
172. Sudhakar, M.; Kumar, V. V.; Naresh, G.; Kantam, M. L.; Bhargava, S. K.; Venugopal, A., Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M= Pd, Pt, Ru, Cu, Ni) catalysts. Appl. Catal. B: Environmental 2016, 180, 113-120.
173. Al-Shaal, M. G.; Calin, M.; Delidovich, I.; Palkovits, R., Microwave-assisted reduction of levulinic acid with alcohols producing γ-valerolactone in the presence of a Ru/C catalyst. Catal. Commun. 2016, 75, 65-68.
174. Al-Shaal, M. G.; Wright, W. R. H.; Palkovits, R., Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green Chem. 2012, 14, 1260-1263.
175. Ftouni, J.; Muñoz-Murillo, A.; Goryachev, A.; Hofmann, J. P.; Hensen, E. J. M.; Lu, L.; Kiely, C. J.; Bruijnincx, P. C. A.; Weckhuysen, B. M., ZrO2 Is Preferred over TiO2 as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to γ‑Valerolactone. ACS Catal. 2016, 6, 5462-5472.
176. Tan, J.; Cui, J.; Ding, G.; Deng, T.; Zhu, Y.; Li, Y.-w., Efficient aqueous hydrogenation of levulinic acid to γ-valerolactone over a highly active and stable ruthenium catalyst. Catal. Sci. Technol. 2016, 6, 1469-1475.
177. Tan, J.; Cui, J.; Cui, X.; Deng, T.; Li, X.; Zhu, Y.; Li, Y., Graphene-Modified Ru Nanocatalyst for Low-Temperature Hydrogenation of Carbonyl Groups. ACS Catal. 2015, 5, 7379-7384.
178. Sun, J.-K.; Xu, Q., Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 2014, 7, 2071-2100.
179. Cao, W.; Luo, W.; Ge, H.; Su, Y.; Wang, A.; Zhanga, T., UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chem. 2017, 19, 2201-2211.
180. Kuwahara, Y.; Kango, H.; Yamashita, H., Catalytic Transfer Hydrogenation of Biomass-Derived Levulinic Acid and Its Esters to γ‑Valerolactone over Sulfonic Acid-Functionalized UiO-66. ACS Sustainable Chem. Eng. 2017, 5, 1141-1152.
181. Fang, X.; Shang, Q.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y.; Zhang, Q.; Luo, Y.; Jiang, H.-L., Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis. Adv. Mater. 2018, 30, 1705112.
182. Sánchez-Sánchez, M.; Getachew, N.; Díaz, K.; Díaz-García, M.; Chebude, Y.; Díaz, I., Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 2015, 17, 1500-1509.
183. Yan, H.; Yang, Y.; Tong, D.; Xiang, X.; Hu, C., Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42/ZrO2 and SO42/ZrO2–Al2O3 solid acid catalysts. Catal. Commun. 2009, 10, 1558-1568.
184. Upare, P. P.; Lee, J.-M.; Hwang, D. W.; Halligudi, S. B.; Hwang, Y. K.; Chang, J.-S., Selective hydrogenation of levulinic acid to g-valerolactone over carbon-supported noble metal catalysts. J. Ind. Eng. Chem. 2011, 11, 287-292.
185. Yan, Z.-p.; Lin, L.; Liu, S., Synthesis of γ-Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst. Energy & Fuels 2009, 23, 3853-3858.
186. Hynesa, M. J.; Jonson, B., Lead, glass and the environment. Chem. Soc. Rev. 1997, 26, 133-145.
187. AR, F.; DR, S., Current needs for increased accuracy and precision in measurements of low levels of lead in blood. Environ. Res. 1992, 2, 125-133.
188. Kavallieratos, K.; Rosenberg, J. M.; Chen, W.-Z.; Ren, T., Fluorescent Sensing and Selective Pb(II) Extraction by a Dansylamide Ion-Exchanger. J. Am. Chem. Soc. 2005, 127, 6514-6515.
189. Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J., Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 2012, 41, 3210-3244.
190. Bannon, D. I.; Murashchik, C.; Zapf, C. R.; Farfel, M. R.; J. Julian Chisoim, J., Graphite Furnace Atomic Absorption Spectroscopic Measurement of Blood Lead in Matrix-Matched Standards. Clin. Chem. 1994, 40, 1730-1734.
191. Carter, K. P.; Young, A. M.; Palmer, A. E., Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114, 4564-4601.
192. Wang, X.; Guo, X., Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst 2009, 134, 1348-1354.
193. Zhou, Y.; Chen, H.-H.; Yan, B., An Eu3+ post-functionalized nanosized metal–organic framework for cation exchange-based Fe3+-sensing in an aqueous environment. J. Mater. Chem. A 2014, 2, 13691-13697.
194. Marbella, L.; Serli-Mitasev, B.; Basu, P., Development of a Fluorescent Pb2+ Sensor. Angew. Chem. Int. Ed. 2009, 48, 3996-3998.
195. Wang, Y.; Hu, J.; Zhuang, Q.; Ni, Y., Label-Free Fluorescence Sensing of Lead(II) Ions and Sulfide Ions Based on Luminescent Molybdenum Disulfide Nanosheets. ACS Sustainable Chem. Eng. 2016, 4, 2535-2541.
196. Cui, L.; Wu, J.; Li, J.; Ju, H., Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal−Organic Framework. Anal. Chem. 2015, 87, 10635-10641.
197. Li, C.-L.; Liu, K.-T.; Lin, Y.-W.; Chang, H.-T., Fluorescence Detection of Lead(II) Ions Through Their Induced Catalytic Activity of DNAzymes. Anal. Chem. 2011, 83, 225-230.
198. Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam, W.; Yoon, J., A Highly Selective Fluorescent Chemosensor for Pb2+. J. Am. Chem. Soc. 2005, 127, 10107-10111.
199. Brown, C. M.; Carta, V.; Wolf, M. O., Thermochromic Solid-State Emission of Dipyridyl Sulfoxide Cu(I) Complexes. Chem. Mater. 2018, 30, 5786-5795.
200. Stavila, V.; Talin, A. A.; Allendorf, M. D., MOF-based electronic and optoelectronic devices. Chem. Soc. Rev. 2014, 43, 5994-6010.
201. Wałe˛sa-Chorab, M.; Patroniak, V.; Kubicki, M.; Ka˛dziołka, G.; Przepiórski, J.; Michalkiewicz, B., Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 2012, 291, 1-8.
202. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordig, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850-13851.
203. He, C.; Liu, D.; Lin, W., Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015, 115, 11079-11108.
204. Huang, R.-W.; Wei, Y.-S.; Dong, X.-Y.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T. C. W., Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat. Chem. 2017, 9, 689-697.
205. Hua, Y.; Xu, B.; Liu, P.; Chen, H.; Tian, H.; Cheng, M.; Kloo, L.; Sun, L., High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors. Chem. Sci. 2016, 7, 2633-2638.
206. Chang, H.-N.; Liu, L.-W.; Hao, Z. C.; Cui, G.-H., A 3D Ag(I) metal-organic framework for sensing luminescence and photocatalytic activities. J. Mol. Struct. 2018, 1155, 496-502.
207. Drake, P. L.; Hazelwood, K. J., Exposure-Related Health Effects of Silver and Silver Compounds: A Review. Ann. occup. Hyg. 2005, 49, 575-585.
208. Wang, C.-c.; Jing, H.-p.; Wang, P., Three silver-based complexes constructed from organic carboxylic acid and 4,4'-bipyridine-like ligands: Syntheses, structures and photocatalytic properties. J. Mol. Struct. 2014, 1074, 92-99.
209. Huang, T.-H.; Yan, J.; Yang, H.; Qiang, L.; Du, H.-M., Synthesis, structure, characterization and fluorescent properties of Agþ complexes with extended p/p interactions. J. Mol. Struct. 2015, 1101, 66-72.
210. Li, H.; Han, Y.; Shao, Z.; Li, N.; Huang, C.; Hou, H., Water-stable Eu-MOF fluorescent sensors for trivalent metal ions and nitrobenzene. Dalton Trans. 2017, 46, 12201-12208.
211. III, S. W. T.; Joly, G. D.; Swager, T. M., Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev. 2007, 107, 1339-1386.
212. Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213-2228.
213. Hou, J.-X.; Gao, J.-P.; Liu, J.; Jing, X.; Li, L.-J.; Du, J.-L., Highly selective and sensitive detection of Pb2+ and UO2 2+ ions based on a carboxyl-functionalized Zn(II)-MOF platform. Dyes and Pigments 2019, 160, 159-164.
214. Han, Y.; Li, J.-R.; Xie, Y.; Guo, G., Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chem. Soc. Rev. 2014, 43, 5952-5981.
215. Wang, M.-S.; Guo, S.-P.; Li, Y.; Cai, L.-Z.; Zou, J.-P.; Xu, G.; Zhou, W.-W.; Zheng, F.-K.; Guo, G.-C., A Direct White-Light-Emitting Metal-Organic Framework with Tunable Yellow-to-White Photoluminescence by Variation of Excitation Light. J. Am. Chem. Soc. 2009, 131, 13572-13573.
216. Lin, S.; Cui, Y.-Z.; Qiu, Q.-M.; Han, H.-L.; Li, Z.-F.; Liu, M.; Xin, X.-L.; Jin, Q.-H., Synthesis, characterization, luminescent properties of silver (I) complexes based on organic P-donor ligands and mercaptan ligands. Polyhedron 2017, 134, 319-329.
217. Yang, Y. Y.; Zhou, L.-X.; Zheng, Y. Q.; Zhu, H.-L.; Li, W.-Y., Hydrothermal synthesis, photoluminescence and photocatalytic properties of two silver(I) complexes. J. Solid State Chem. 2017, 253, 211-218.
218. Cui, Y.-Z.; Yuan, Y.; Li, Z.-F.; Liu, M.; Jin, Q.-H.; Jiang, N.; Cui, L.-N.; Gao, S., From ring, chain to network: Synthesis, characterization, luminescent properties of silver(I) complexes constructed by diphosphine ligands and various N-donor ligands. Polyhedron 2016, 112, 118-129.
219. Zhang, S.; Wang, Z.; Zhang, H.; Cao, Y.; Sun, Y.; Yiping Chen; Huang, C.; Yu, X., Self-assembly of two fluorescent supramolecular frameworks constructed from unsymmetrical benzene tricarboxylate and bipyridine. Inorganica Chimica Acta 2007, 360, 2704-2710.
220. Wu, Y.-J.; Hu, D.-C.; Yao, X.-Q.; Yang, Y.-X.; Liu, J.-C., Two new complexes constructed by semirigid carboxylic acid ligand: Synthesis, crystal structures, absorption of organic dye and photoluminescence properties. Inorganica Chimica Acta 2016, 453, 488-493.
221. Fei, H.; U, L. P.; Rogow, D. L.; Bresler, M. R.; Abdollahian, Y. A.; Oliver, S. R. J., Synthesis, Characterization, and Catalytic Application of a Cationic Metal-Organic Framework: Ag2(4,40-bipy)2(O3SCH2CH2SO3). Chem. Mater. 2010, 22, 2027-2032.
222. Wua, Y.; Wua, X.; Fang, S.; Yang, S.; Li, W.; Wang, H.; Yu, X., A novel hexanuclear silver(I) complex with photoluminescence properties. Polyhedron 2017, 122, 155-160.
223. Lu, X.; Ye, J.; Zhang, D.; Xie, R.; Bogale, R. F.; Suna, Y.; Zhao, L.; Zhao, Q.; Ning, G., Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility. J. Inorg. Biochem. 2014, 138, 114-121.
224. Ding, Y.; Zhu, H.; Zhang, X.; Zhu, J.-J.; Burd, C., Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chem. Commun. 2013, 49, 7797-7799.
225. Wang, M.; Wang, J.; Xue, W.; Wu, A., A benzimidazole-based ratiometric fluorescent sensor for Cr3+ and Fe3+ in aqueous solution. Dyes and Pigments 2013, 97, 475-480.
226. Dang, S.; Ma, E.; Sun, Z.-M.; Zhang, H., A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. J. Mater. Chem. 2012, 22, 16920-16926.
227. Hao, Z.; Song, X.; Zhu, M.; Meng, X.; Zhao, S.; Su, S.; Yang, W.; Song, S.; Zhang, H., One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion. J. Mater. Chem. A 2013, 1, 11043-11050.
228. Tang, Q.; Liu, S.; Liu, Y.; Miao, J.; Li, S.; Zhang, L.; Shi, Z.; Zheng, Z., Cation Sensing by a Luminescent Metal−Organic Framework with Multiple Lewis Basic Sites. Inorg. Chem. 2013, 52, 2799-2801.
229. Nguyen, C. V.; Chiang, W.-H.; Kevin. C.-W. Wu, Water- and Thermal-Stable Silver-based Photoluminescent Metal-Organic Coordination Polymer for Highly Selective Lead Ion Sensing. Bull. Chem. Soc. Jan. 2019.
230. Zhou, X.-H.; Li, L.; Li, H.-H.; Li, A.; Yang, T.; Huang, W., A flexible Eu(III)-based metal–organic framework: turn-off luminescent sensor for the detection of Fe(III) and picric acid. Dalton Trans. 2013, 42, 12403-12409.
231. He, G.; Peng, H.; Liu, T.; Yang, M.; Zhang, Y.; Fang, Y., A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles. J. Mater. Chem. 2009, 19, 7347-7353.
232. Yang, C.-X.; Ren, H.-B.; Yan, X.-P., Fluorescent Metal−Organic Framework MIL-53(Al) for Highly Selective and Sensitive Detection of Fe3+ in Aqueous Solution. Anal. Chem. 2013, 85, 7441-7446.
233. Qu, K.; Wang, J.; Ren, J.; Qu, X., Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Label-Free Detection of Iron Achtungtrenung(III) Ions and Dopamine. Chem. Eur. J. 2013, 19, 7243-7249.
234. Wen, G.-X.; Han, M.-L.; Wu, X.-Q.; Wu, Y.-P.; Dong, W.-W.; Zhao, J.; Li, D.-S.; Ma, L.-F., A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(III)–organic framework. Dalton Trans. 2016, 45, 15492-15499.

無法下載圖示 全文公開日期 2024/08/01 (校內網路)
全文公開日期 2024/08/01 (校外網路)
全文公開日期 2024/08/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE