簡易檢索 / 詳目顯示

研究生: 高健誠
Chien-Cheng Kao
論文名稱: 應用大數據分析於大型太陽能電廠故障診斷技術系統研製
Application of Big Data Analysis to The Development of Fault Diagnosis System for Large Solar Power Plant
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
陳鴻誠
Hung-Cheng Chen
楊念哲
Nien-Che Yang
張建國
Chien-Kuo Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 太陽能維護與運轉太陽能故障診斷太陽能系統效能指標
外文關鍵詞: Solar maintenance and operation, solar fault diagnosis, solar system performance indicators
相關次數: 點閱:276下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在石化能源的產量逐漸下降及因應經濟發展的需求,能源的發展已經逐步邁向再生能源方向前進,其中太陽能裝機容量占再生能源的比例僅次於水力發電,除了持續建設大量的太陽能電廠以供經濟發展與民生使用外,也需思考太陽能發電系統將制定一套完善的維護項目供太陽能設備能夠長久的運行並提升可靠性,透過如何藉由定時的案場檢測項目、太陽能板清潔及運用監控系統中的各項量測數據分析統計以維持太陽能電廠的最佳發電性能與太陽能系統的效益,因此維護與運轉的目的是使太陽能電廠能維持在一定的發電效能之上。

    有鑑於此,本研究旨在研究如何檢測太陽能系統故障及維護項目,其中包含:(1) 研究維護運轉的建議指南,(2) 監控系統的相關設置,(3) 撰寫故障診斷相關程式語言相關功能,(4) 至實測場地進行測試,經測試得以證明藉由有效的故障診斷方式可以在短時間內發現故障並修繕減少發電損失,該方法可對於大型太陽能電廠在故障診斷與電廠效能評估上,提供一個具有價值的參考依據。


    With the gradual decline in the output of petrochemical energy and in response to the needs of economic development, the development of energy has gradually moved towards the direction of renewable energy. Among them, the installed capacity of solar energy in renewable energy is second only to hydropower, in addition to the continuous construction of a large number of solar power plants to supply In addition to economic development and people's livelihood, it is also necessary to consider that the solar power generation system will prepare a complete set of maintenance projects for the long-term operation of solar equipment and improve reliability, and through how to test the project on a regular basis, solar panel cleaning and operation monitoring the scale measurement data in the system analyzes statistics to maintain the optimal power generation performance of the solar power generation and the benefit of the solar system. Therefore, the goal of maintenance and operation is to enable the solar power plant to maintain a certain power generation efficiency.
    In view of this, the purpose of this study is to research how to detect solar system faults and maintenance items, including: (1) recommended guidelines for research and maintenance operations, (2) monitoring system related settings, (3) writing fault diagnosis related programming language function, (4) Go to the measured site, the test proves that the effective fault diagnosis method can find faults and repair in a short time to reduce power losses. This method can be used for fault diagnosis and power plant performance evaluation for large solar power plants, to provide a valuable basis for examination.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法 3 1.3 章節概述 5 第二章 太陽能維護運轉與故障診斷簡介 6 2.1 前言 6 2.2 太陽能系統維護 6 2.3 太陽能系統監控 11 2.4 太陽能故障診斷類型 15 第三章 太陽能監控系統與故障診斷設計與規劃 20 3.1 前言 20 3.2 太陽能電池簡介 20 3.3 太陽能故障診斷 25 3.4 電廠關鍵效能指標 38 3.5 報表設計 40 3.6 監控頁面介紹 44 第四章 監測系統實際驗證 49 4.1 實驗場地簡介 49 4.2 案場實際驗證 52 4.2.1 案例一 無太陽能板故障 53 4.2.2 案例二 太陽能板故障2塊 55 4.2.3 案例三 太陽能板故障4塊 58 4.2.4 案例四 太陽能板故障6塊與7塊 60 4.2.5 案例統整 63 第五章 結論與未來展望 64 5.1 結論 64 5.2 未來展望 65 參考文獻 66

    [1] IRENA. Trend in Renewable Energy. Retrieved April 6, 2020, from https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-Series
    [2] REN21, RENEWABLES 2019 GLOBAL STATUS REPORT. Retrieved April 15, 2020, from https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf
    [3] Fiix, Inc. Should You Focus On Asset Availability Or Cost Reduction? Retrieved April 29, 2020, from https://www.fiixsoftware.com/blog/focus-availability-cost-reduction
    [4] IEC62446-1ed1.1, Photovoltaic (PV) system – Requirements for testing, documentation and maintenance - Part 1: Grid connected systems – Documentation, commissioning tests and inspection, August 2018.
    [5] National Renewable Energy Laboratory, Sandia National Laboratory, SunSpec Alliance, and the SunShot National Laboratory Multiyear Partnership (SuNLaMP) PV O&M Best Practices Working Group. 2018. Best Practices for Operation and Maintenance of Photovoltaic and Energy Storage Systems; 3rd Edition. Golden, CO: National Renewable Energy Laboratory. NREL/TP-7A40-73822. https://www.nrel.gov/docs/fy19osti/73822.pdf.
    [6] Solar Power Europe, Inc. Operation & Maintenance Best Practice Guidelines / Version 4.0. Retrieved March 8, 2020, from https://www.solarpowereurope.org/om-best-practice-guidelines-version-4-0/.
    [7] Sandia National Laboratories, PV System Component Fault and Failure Compilation and Analysis, February 2018. Retrieved March 8, 2020, from https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2018/181743.pdf
    [8] IEC61724-1ed1.0, Photovoltaic System Performance - Part 1: Monitoring, March 2017.
    [9] IEC61724:1998, Photovoltaic System Performance Monitoring – Guidelines for Measurement, Data Exchange and Analysis, first ed., Switz. IEC, Geneva,1998.
    [10] Davarifar, M., Rabhi, A., El-Hajjaji, A., & Dahmane, M. (2013, October). Real-time model base fault diagnosis of PV panels using statistical signal processing. In 2013 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 599-604). IEEE.
    [11] Köntges, M., Kurtz, S., Packard, C., Jahn, U., Berger, K. A., Kato, K., ... & Van Iseghem, M. (2014). Performance and reliability of photovoltaic systems, subtask 3.2: review of failures of photovoltaic modules. Report2014.
    [12] Kopp, E. S., Lonij, V. P., Brooks, A. E., Hidalgo-Gonzalez, P. L., & Cronin, A. D. (2012, June). I–V curves and visual inspection of 250 PV modules deployed over 2 years in Tucson. In 2012 38th IEEE Photovoltaic Specialists Conference (pp. 003166-003171). IEEE.
    [13] Livera, A., Theristis, M., Makrides, G., & Georghiou, G. E. (2019). Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems. Renewable energy, 133, 126-143.
    [14] Hu, Y., Zhang, J., Cao, W., Wu, J., Tian, G. Y., Finney, S. J., & Kirtley, J. L. (2015). Online two-section PV array fault diagnosis with optimized voltage sensor locations. IEEE Transactions on Industrial Electronics, 62(11), 7237-7246.
    [15] Ma, M., Liu, H., Zhang, Z., Yun, P., & Liu, F. (2019). Rapid diagnosis of hot spot failure of crystalline silicon PV module based on IV curve. Microelectronics Reliability, 100, 113402.
    [16] Trupke, T., Mitchell, B., Weber, J. W., McMillan, W., Bardos, R. A., & Kroeze, R. (2012). Photoluminescence imaging for photovoltaic applications. Energy Procedia, 15, 135-146.
    [17] Karimi, A. M., Fada, J. S., Liu, J., Braid, J. L., Koyutürk, M., & French, R. H. (2018, June). Feature extraction, supervised and unsupervised machine learning classification of PV cell electroluminescence images. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 0418-0424). IEEE.
    [18] Koch, S., Weber, T., Sobottka, C., Fladung, A., Clemens, P., & Berghold, J. (2016, June). Outdoor electroluminescence imaging of crystalline photovoltaic modules: comparative study between manual ground-level inspections and drone-based aerial surveys. In 32nd Eur. Photovolt. Sol. Energy Conf. Exhib (pp. 1736-1740).
    [19] Bressan, M., El Basri, Y., Galeano, A. G., & Alonso, C. (2016). A shadow fault detection method based on the standard error analysis of IV curves. Renewable Energy, 99, 1181-1190.
    [20] Silvestre, S., Mora-López, L., Kichou, S., Sánchez-Pacheco, F., & Dominguez-Pumar, M. (2016). Remote supervision and fault detection on OPC monitored PV systems. Solar Energy, 137, 424-433.
    [21] Hazra, A., Das, S., & Basu, M. (2017). An efficient fault diagnosis method for PV systems following string current. Journal of Cleaner Production, 154, 220-232.
    [22] Kumar, B. P., Ilango, G. S., Reddy, M. J. B., & Chilakapati, N. (2017). Online fault detection and diagnosis in photovoltaic systems using wavelet packets. IEEE Journal of Photovoltaics, 8(1), 257-265.
    [23] Ventura, C., & Tina, G. M. (2015). Development of models for on-line diagnostic and energy assessment analysis of PV power plants: The study case of 1 MW Sicilian PV plant. Energy Procedia, 83, 248-257.
    [24] Dhimish, M., Holmes, V., Mehrdadi, B., & Dales, M. (2017). Simultaneous fault detection algorithm for grid-connected photovoltaic plants. IET Renewable Power Generation, 11(12), 1565-1575.
    [25] Garoudja, E., Harrou, F., Sun, Y., Kara, K., Chouder, A., & Silvestre, S. (2017). Statistical fault detection in photovoltaic systems. Solar Energy, 150, 485-499.
    [26] Harrou, F., Sun, Y., Taghezouit, B., Saidi, A., & Hamlati, M. E. (2018). Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches. Renewable energy, 116, 22-37.
    [27] Harrou, F., Taghezouit, B., & Sun, Y. (2019). Robust and flexible strategy for fault detection in grid-connected photovoltaic systems. Energy conversion and management, 180, 1153-1166.
    [28] Youssef, A., El-Telbany, M., & Zekry, A. (2017). The role of artificial intelligence in photo-voltaic systems design and control: A review. Renewable and Sustainable Energy Reviews, 78, 72-79.
    [29] Chen, Z., Han, F., Wu, L., Yu, J., Cheng, S., Lin, P., & Chen, H. (2018). Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents. Energy conversion and management, 178, 250-264.
    [30] Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., & Pavan, A. M. (2016). A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renewable Energy, 90, 501-512.
    [31] Jufri, F. H., Oh, S., & Jung, J. (2019). Development of Photovoltaic abnormal condition detection system using combined regression and Support Vector Machine. Energy, 176, 457-467.
    [32] Zhao, Y., Ball, R., Mosesian, J., de Palma, J. F., & Lehman, B. (2014). Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays. IEEE Transactions on Power Electronics, 30(5), 2848-2858.
    [33] Liu, G., Zhu, L., Wu, X., & Wang, J. (2019). Time series clustering and physical implication for photovoltaic array systems with unknown working conditions. Solar Energy, 180, 401-411.
    [34] Lin, P., Lin, Y., Chen, Z., Wu, L., Chen, L., & Cheng, S. (2017). A density peak-based clustering approach for fault diagnosis of photovoltaic arrays. International Journal of Photoenergy, 2017.
    [35] Zhu, H., Lu, L., Yao, J., Dai, S., & Hu, Y. (2018). Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model. Solar Energy, 176, 395-405.
    [36] Belaout, A., Krim, F., Mellit, A., Talbi, B., & Arabi, A. (2018). Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification. Renewable Energy, 127, 548-558.
    [37] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11-26.
    [38] Wen, L., Li, X., Gao, L., & Zhang, Y. (2017). A new convolutional neural network-based data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65(7), 5990-5998.
    [39] Dhimish, M., & Holmes, V. (2016). Fault detection algorithm for grid-connected photovoltaic plants. Solar Energy, 137, 236-245.
    [40] Dhimish, M., Holmes, V., & Dales, M. (2017). Parallel fault detection algorithm for grid-connected photovoltaic plants. Renewable Energy, 113, 94-111.

    無法下載圖示 全文公開日期 2023/07/02 (校內網路)
    全文公開日期 2025/07/02 (校外網路)
    全文公開日期 2025/07/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE