簡易檢索 / 詳目顯示

研究生: 樓佳鑫
Jia-Sin Lou
論文名稱: 隔熱砂漿物理性質之研究
The study on the Physical Properties of Theamal Isolation Mortar
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 馮廣明
Guang-Ming Fong
陳建成
Jian-Cheng Chen
廖敏志
Min-Chih Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 玻化微珠輕質隔熱砂漿泡沫熱傳導率
外文關鍵詞: Perlite, Lightweight Thermal Insulation Mortar, Foam, Thermal Conductivity
相關次數: 點閱:259下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用玻化微珠作為粒料主架構,採用黃氏緻密配比法之邏輯,設計出輕質隔熱砂漿之配比,輕質隔熱砂漿在變數設計上,採用5種不同水膠比(W/B=0.2、0.25、0.3、0.4、0.5),及三種不同泡沫添加量(Foam=0%、5%、10%),另外水泥漿體會搭配卜作嵐材料(燃煤飛灰、水淬高爐石粉)及強塑劑的使用,共設計出15組配比,輕質隔熱砂漿經拌合完成後量測相關新拌性質及硬固性質,經結果顯示添加泡沫之砂漿,會隨著泡沫添加量越多而降低單位重,單位重大約介於521kg/m3~1624kg/m3,這對砂漿之隔熱能力是有幫助的,熱傳導率大約介於0.119 W/m∙k ~0.497 W/m∙k,相對地會使砂漿的力學性質(抗壓強度、抗折強度)有下降之情形,其中抗壓強度大約介於11kgf/cm2~508kgf/cm2,抗折強度大約介於0.6kgf/cm2~39.4kgf/cm2,同時砂漿具有較多孔隙,導致吸水率較高,吸水率大約介於0.06%~1.4%,且本研究發現水膠比較高之砂漿有輕量化及良好之隔熱性能,因添加泡沫是可以使砂漿熱傳導率降得更低,但相對熱傳導率,力學性質也會降低,建議添加泡沫作法應注意破泡率,以增加試體的成功率。


In this study, the densified mixture design algorithm was applied to design the mixture proportion of lightweight thermal insulation mortar. The mortar samples were prepared using a mixture of fly ash, ground granulated blast furnace slag with various water-to-binder ratios (0.2, 0.25, 0.3, 0.4, and 0.5) and foam contents (0%, 5%, and 10%). There were fifteen mix-proportions in total. The properties of both fresh and hardened mortar were checked. The experimental results show that the unit weight of the mortar decreased with increasing foam content. The unit weight of the mortar ranged from 521 kg/m3 to 1624 kg/m3. This low unit weight positively contributed to the thermal insulation property of the mortar, indicating by the low thermal conductivity values of the mortar. As the result, the thermal conductivity of the mortar ranged from 0.119 W/m∙k to 0.497 W/m∙k. The low thermal conductivity values were associated with the poor strength values of the mortars. The compressive strength of the mortar ranged from 11kgf/cm2~508kgf/cm2 and the flexural strength of the mortar ranged from 0.6kgf/cm2~39.4kgf/cm2,The addition of foam introduced more pores within the mortar, leading to an increase of water absorption. In this study, the water absorption capacity of the mortar ranged from 0.06% to 1.4%. This study also found that the mortar samples prepared with a water-to-binder ratio of 0.2 exhibited a lightweight and good thermal insulation properties. It is noted that the addition foam should be careful in order to limit the amount of broken foam and improve the stability of the mortar samples.

摘要 i Abstract ii 目錄 iii 表目錄 vi 圖目錄 vii 代號及符號說明 x 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 預期成果 2 1-4 研究流程 3 第二章 文獻回顧 4 2-1 輕質混凝土 4 2-1-1 輕質粒料混凝土簡介 4 2-1-2 輕質混凝土特性 4 2-1-3 泡沫混凝土 5 2-1-4 發泡機制 6 2-2 輕質粒料性質 7 2-2-1 輕質粒料的種類 7 2-2-2 輕質粒料的特性 8 2-2-3 膨脹玻化微珠 8 2-3 黃氏緻密配比法 9 第三章 試驗計畫 25 3-1 計畫概要 25 3-2 試驗材料 25 3-2-1 水泥 25 3-2-2 燃煤飛灰 25 3-2-3 水淬高爐石粉 25 3-2-4 玻化微珠 26 3-2-5 發泡劑 26 3-2-6 強塑劑 26 3-2-7 拌合水 26 3-3 試驗流程 26 3-3-1 試驗變數 26 3-3-2 配比設計 27 3-3-3 拌合程序 27 3-3-4 試驗項目 27 3-4 試驗方法與設備 28 3-4-1 材料基本性質試驗 28 3-4-2 輕質隔熱砂漿新拌性質試驗 30 3-4-3 輕質隔熱砂漿硬固性質試驗 31 第四章 結果與分析 51 4-1 輕質隔熱砂漿流度性質 51 4-2 輕質隔熱砂漿之硬固性質 52 4-2-1 抗壓強度 52 4-2-2 抗折強度 53 4-2-3 吸水率 53 4-2-4 熱傳導率 54 4-2-5 撥水率 55 4-2-6 單位重 55 4-2-7 乾縮 56 4-2-8 線收縮率 57 4-3 綜合分析 57 第五章 結論與建議 78 5-1 結論 78 5-2 建議 79 參考文獻 80

1、 火災調查組, 統計分析內政部消防署2015。
2、 C.A. Hendriks, E Worrell, D. de Jager, K. Blok and P. Riemer, Emission Reduction of Greenhouse Gases from the Cement Industry, Greenhouse Gas R&D Programme IEA, (1998).
3、 C.A. Hendriks, E Worrell, D. de Jager, K. Blok and P. Riemer, Emission Reduction of Greenhouse Gases from the Cement Industry, Greenhouse Gas R&D Programme IEA, (1998).
4、 黃兆龍,混凝土性質與行為詹氏書 局,(2007)年。
5、 郭振雄、陳香梅和 郭振雄、陳香梅和 郭振雄、陳香梅和 羅光達, 羅光達, 「台灣工業部門二氧化碳之排放減量 」,應用經濟 ,應用經濟 論叢, 95期, pp.147-148,2014。
6、 洪盟峰, 洪盟峰, 「水庫淤泥輕質骨材製造與高性能混凝土工程之研究 」,國 立台灣科技大學, 2005。
7、 蔡昌宏, 蔡昌宏, 「燒結型輕質骨材混凝土工程性之研究 」,碩士論文台灣科技大 ,碩士論文台灣科技大 ,碩士論文台灣科技大 ,碩士論文台灣科技大 學, 2001年。
8、 R.W. Steiger, Historical Vignette: Development of Lightweight Aggregate Concrete, Farmington Hills, Michigan (1985).
9、 顏聰, 顏聰, 「人造輕質骨材在台灣發展之前瞻性 」,輕質骨 材混凝土中華,輕質骨 材混凝土中華,輕質骨 材混凝土中華,輕質骨 材混凝土中華材協會,第 三期10-16頁, 2006年。
10、戴妤潔, 戴妤潔, 「發泡輕質材料物理性之探討 發泡輕質材料物理性之探討 」, 碩士論文台灣科技大學, 碩士論文台灣科技大學, 碩士論文台灣科技大學, 碩士論文台灣科技大學, 碩士論文台灣科技大學, 碩士論文台灣科技大學2013年。
11、Canan Tasdemir, Ozkan Sengul, Mehmet Ali Tasdemir, A comparative study on the thermal conductivities and mechanical properties of lightweight concrete, Energy and Buildings (2017).
12、Almir Sales, Francis Rodrigues de Souza, Wilson Nunes dos Santos, Alexsandro Mendes Zimer, Fernando do Couto Rosa Almeida, Lightweight composite concrete produced with water treatment sludge and sawdust: Thermal properties and potential application, Construction and Building Materials 24 (2010) 2446–2453.
13、Kook-Han Kim, Sang-Eun Jeon, Jin-Keun Kim, Sungchul Yang, An experimental study on thermal conductivity of concreteCement and Concrete Research 33 (2003) 363 – 371.
14、Tae Sup Yun, Yeon Jong Jeong, Tong-Seok Han, Kwang-Soo Youm, Evaluation of thermal conductivity for thermally insulated concretes, Energy and Buildings 61 (2013) 125–132.
15、Mehta P.K., Montliro J.M., Concrete:Structure Properties and Materials, Prentice-Hall, Inc, Englewood Cliffs, New York, (1993)105-113.
16、Ramazan Demirbog˘, Ru¨stem Gu¨l, The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete, Cement and Concrete Research 33 (2003) 723 – 727.
17、Y.H. Mugahed Amran, Nima Farzadnia, A.A. Abang Ali, Properties and applications of foamed concrete; a review, Construction and Building Materials 101 (2015) 990–1005.
18、D.K. Panesar, Cellular concrete properties and the effect of synthetic and protein foaming agents, Construction and Building Materials 44 (2013) 575–584.
19、Bing Chen, Ning Liu, A novel lightweight concrete-fabrication and its thermal and mechanical properties, Construction and Building Materials 44 (2013) 691–698.
20、Cong Ma, Bing Chen, Experimental study on the preparation and properties of a novel foamed concrete based on magnesium phosphate cement, Construction and Building Materials 137 (2017) 160–168.
21、Maziah Mohammad, Development of foamed concrete, University of Dundee, (2011).
22、M. R. Jones, A. McCarthy, Preliminary views on the potential of foamed concrete as a structural material, Magazine of Concrete Research, 57 (2005) 21–31.
23、Maheshkumar H. Thakrele Experimental study on foam concrete,International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development,Vol. 4, pp.145-158 (2014).
24、M.R. Jones, A. McCarthy, Heat of hydration in foamed concrete: Effect of mix constituents and plastic density, Cement and Concrete Research 36 (2006) 1032–1041.
25、S. Hutzler,, S.J. Cox, G. Wang, Foam drainage in two dimensions, Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 178–183.
26、A. Saint-Jalmes, M.-L. Peugeot, H. Ferraz, D. Langevin, Differences between protein and surfactant foams: Microscopic properties, stability and coarsening, Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 219–225.
27、Davide Beneventi, Bruno Carre, Alessandro Gandini, Role of surfactant structure on surface and foaming properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects 189 (2001) 65–73.
28、Z. Mitrinova, S. Tcholakova, N. Denkov, K.P. Ananthapadmanabhan, Role of interactions between cationic polymers and surfactants for foam properties, Colloids and Surfaces A: Physicochem. Eng. Aspects 489 (2016) 378–391.
29、Yiquan Liu, Bo Siang Leong, Zhong-Ting Hu, En-Hua Yang, Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent, Construction and Building Materials 148 (2017) 140–147.
30、Ailar Hajimohammadi, Tuan Ngo, Priyan Mendis, How does aluminium foaming agent impact the geopolymer formation mechanism, Cement and Concrete Composites 80 (2017) 277–286.
31、高健章,輕質混凝土在國內發展之研究,內政部建築研究所,pp.70-96,1993。
32、蘇南和林維明,「國內外輕質混凝土科技之發展」,結構工程,第六卷,第四期,(1991)。
33、顏聰、陳豪吉、湯兆緯,輕質骨材設計規範及防火隔熱性質研究,內政部建築研究所,2004年。
34、張澤平、樊麗軍、李珠和 王亞傑,「玻化微珠保溫混凝土初探」,原材料及輔助物料,第11期,第46-48頁,2007年。
35、張澤平 、董彥莉和李珠,「玻化微珠保溫混凝土試驗研究」,理論研究,第12期,2007年。
36、李珠、張巍和穆啟華,「玻化微珠保溫砂漿性能分析」,2007年。
37、張澤平、楊曉晶、李建宇,「玻化微珠保溫砂漿的綠色評價」,建築節能,第8期,第44-46頁,2008年。
38、「玻化微珠級配對玻化微珠保溫混凝土性能的影響」,中國科技論文,第10卷,第13期,第1507-1510頁,2015年。
39、黃兆龍,卜作嵐混凝土使用手冊,財團法人中興工程顧問社,科技圖書,台北,2007年。
40、D.N. Huntzinger, T.D. Eatmon, A life-cycle assessment of Portland cement manufacturing:comparing the traditional process with alternative technologies, Journal of Cleaner Production, pp.668-675, (2009).
41、K. Ramamurthy, E.K. Kunhanandan Nambiar, G. Indu Siva Ranjani, A classification of studies on properties of foam concrete, Cement and Concrete Composites, 31 (2009) 388–396.
42、Tommy Y. Lo, Structural Lightweight Concrete in Hong Kong : Now, New, Next,Department of Building & Construction City University of Hong Kong。
43、周曉龍,「夏熱冬冷地區玻化微珠保溫砂漿的配制」,牆材革新與建築節能,第6期,第56-59頁,2010年。
44、柴麗娟,「粉煤灰對玻化微珠保溫砂漿性能的影響」,低溫建築技術,第1期,第17-19頁,2014年。
45、張澤平、楊曉晶、李建宇,「玻化微珠保溫砂漿的綠色評價」,建築節能,第8期,第44-46頁,2008年。
46、楊曉華、陳傳飛、楊博、葉慈彪、羅世明,「玻化微珠與閉孔膨脹珍珠岩的性能比較」,新型建築材料,第4期,第42-44頁,2009年。
47、李友群、李麗娟、蘇健波,「玻化微珠對高強度混凝土高溫性能影響研究」,混凝土,第4期,第51-53頁,2009年。
48、李珠、羅盛、王偉,「關於玻化微珠保溫混凝土工作性的討論」,山西建築,第38卷,第19期,第132-133頁,2012年。
49、Gong,J., Zurong Duan, Kaiqiang Sun, Min Xiao, Waterproof properties of thermal insulation mortar containing vitrified microsphere, Construction and Building Materials 123 (2016) 274–280.
50、Oktay,H., Recep Yumrutas, Abdullah Akpolat, Mechanical and thermophysical properties of lightweight aggregate concretes, Construction and Building Materials 96 (2015) 217–225.
51、Sengul,O., Senem Azizi, Filiz Karaosmanoglub, Mehmet Ali Tasdemir, Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete, Energy and Buildings 43 (2011) 671–676.
52、Topcu,B.I., Burak Is¸ıkdag˘, Effect of expanded perlite aggregate on the properties of lightweight concrete, journal of materials processing technology 204 (2008) 34–38.
53、Kunhanandan,E.K., Nambiar, K. Ramamurthy, Influence of filler type on the properties of foam concrete, Cement & Concrete Composites 28 (2006) 475–480.
54、Esmaily,H., H. Nuranian, Non-autoclaved high strength cellular concrete from alkali activated slag, Construction and Building Materials 26 (2012) 200–206.
55、The Aberdeen Group All rights reserved, Low density concretes for insulation and fill(1981).
56、JC/T 1042-2007,「膨脹玻化微珠」,中華人民共和國建材行業標準,2007年。
57、ASTM, Standard Specification for Lightweight Aggregates for Structural Concrete, ASTM C330/330M-14, pp.1-4, (2014).
58、ASTM, Standard Specification for Lightweight Aggregates for Insulating Concrete, ASTM C332-09, pp.1-3, (2009).
59、American Concrete Institute, ACI 213 R87:Guide for Structural Lightweight Aggregate Concrete, Report by ACI Committee 213, pp.8-14, (1987).

QR CODE