簡易檢索 / 詳目顯示

研究生: 賴昱安
Yu-An Lai
論文名稱: 廣義分頻多工無線通訊系統之可調適低複雜度接收器電路設計與實現
The VLSI Architecture Design and Implementation of the Configurable and Low-Complexity Joint-MMSE GFDM Receiver
指導教授: 沈中安
Chung-An Shen
口試委員: 王煥宗
Huan-Chun Wang
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 40
中文關鍵詞: 廣義分頻多工聯合最小均方誤差接收器低硬體複雜度可調適分時架構
外文關鍵詞: GFDM, joint-MMSE, receiver, low complexity, configurable, time sharing architecture
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

與現今廣泛應用在無線通訊系統中的正交分頻多工(OFDM)技術相比,廣義分頻多工(GFDM)有較高的頻譜效率,較低的帶外輻射功率,對載波頻率偏移有較高的抗性等優點。除此之外,GFDM調變技術擁有高度的彈性與可調適性,可以透過改變調變資料的結構來符合不同應用的需求,因此,綜合以上原因,GFDM便被討論為5G的調變候選技術之一。
在GFDM接收器中,聯合最小均方誤差(joint-MMSE)接收器擁有最好的BER效能表現,而其運算複雜度也是最高,當系統參數需求較大時會造成過大系統複雜度的問題。近年來基於矩陣分解方式的joint-MMSE GFDM接收器演算法利用離散傅立葉轉換(DFT)矩陣化簡了矩陣運算的複雜度,使得joint-MMSE GFDM接收器電路設計與實現更值得被研究與探討。
本論文將基於超大型積體電路設計與實現joint-MMSE GFDM接收器電路。其中,我們在設計實現上加入快速傅立葉轉換(FFT)演算法位元反轉的考量,並提出一個新的joint-MMSE GFDM接收器資料處理流程,在電路架構設計上利用分時多工架構以達成低複雜度之目的。此外,針對系統中記憶體讀寫過程,我們提出一個避免資料遺失的記憶體位址存取方法。在本論文中的設計使用台積電90奈米製程下實現,根據合成結果顯示,在工作頻率204 MHz下,使用了492.6k個邏輯閘。在我們提出的資料排序合併處理策略下,我們的設計可以減少約16%的面積花費。另外,與目前所知FPGA實現結果相比,本論文的設計達成了低邏輯閘數並且具備可調適性的電路結果。


This thesis presents the configurable and low-complexity VLSI architecture of joint minimum mean square error generalized frequency division multiplexing (joint-MMSE GFDM) receiver. First of all, we consider the bit reverse permutation caused from FFT algorithm and then propose a new joint-MMSE GFDM data processing flow. In proposed data processing flow, the additional circuit and latency to solve bit reverse problem is significantly reduced. Moreover, the time sharing architecture and radix-2 SDF FFT architecture are adopted in our design to reduce hardware complexity. For high flexible requirement of GFDM, every processing element in system is design for supporting different system parameters setting. Furthermore, a memory address access algorithm for avoiding data loss is proposed for the memory reading and writing process in the proposed system. Proposed design is synthesized based on TSMC 90nm technology. At 204 MHz operating frequency, proposed architecture uses 492.6 kGEs. The area cost is reduced about 16% by our data permutation strategy. Moreover, the proposed design can achieve low area complexity compared to the FPGA implementation from other work as we know.

摘要 II Abstract III Table of Contents IV Figures VI Tables VII I. Introduction 1 1.1 Background 1 1.2 Previous Works 3 1.3 This Work’s Feature 4 1.4 Section Arrangement 4 1.5 Notation 5 II. System Model of GFDM 6 2.1 GFDM Transmitter 6 2.2 GFDM Receiver 7 III. The Proposed Processing Flow 9 3.1 Analysis of Data Processing Flow 9 3.2 Proposed Joint-MMSE GFDM Data Processing Flow 11 IV. Proposed Architecture of Joint-MMSE GFDM Receiver 14 4.1 System Parameter Consideration 14 4.2 The Overview of Proposed Architecture 15 4.3 Configurable FFT/IFFT Module 16 4.4 Reorder Buffer and Proposed Memory Access Algorithm 17 4.5 Coefficient Table 23 4.6 Coefficient Generator 24 4.7 Bias Corrector 24 4.8 Latency Analysis 25 V. Experimental Results 27 VI. Conclusion 29 References 30

[1] J. Van De Beek and F. Berggren, "Out-of-Band Power Suppression in OFDM," in IEEE Communications Letters, vol. 12, no. 9, pp. 609-611, September 2008.
[2] I. B. Franco de Almeida and L. Leonel Mendes, "Linear GFDM: A Low Out-of-band Emission Configuration for 5G Air Interface," 2018 IEEE 5G World Forum (5GWF), Silicon Valley, CA, 2018, pp. 311-316.
[3] S. Wang, C. Li, K. Lee and H. Su, "A Novel Low-Complexity Precoded OFDM System With Reduced PAPR," in IEEE Transactions on Signal Processing, vol. 63, no. 6, pp. 1366-1376, March15, 2015.
[4] B. Lim and Y. Ko, "SIR Analysis of OFDM and GFDM Waveforms With Timing Offset, CFO, and Phase Noise," in IEEE Transactions on Wireless Communications, vol. 16, no. 10, pp. 6979-6990, Oct. 2017.
[5] N. Michailow et al., "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks," in IEEE Transactions on Communications, vol. 62, no. 9, pp. 3045-3061, Sept. 2014.
[6] G. Fettweis, M. Krondorf and S. Bittner, "GFDM - Generalized Frequency Division Multiplexing," VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, Barcelona, 2009, pp. 1-4.
[7] M. Matthé, L. L. Mendes and G. Fettweis, "Generalized Frequency Division Multiplexing in a Gabor Transform Setting," in IEEE Communications Letters, vol. 18, no. 8, pp. 1379-1382, Aug. 2014.
[8] S. Morosi, M. Biagini, F. Argenti, E. Del Re and L. Yessenturayeva, "Frame design for 5G multicarrier modulations," 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, 2015, pp. 1000-1005.
[9] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat and H. Dai, "A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions," in IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3098-3130, Fourthquarter 2018.
[10] M. Agiwal, A. Roy and N. Saxena, "Next Generation 5G Wireless Networks: A Comprehensive Survey," in IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617-1655, thirdquarter 2016.
[11] E. Öztürk, E. Basar and H. A. Çırpan, "Generalized frequency division multiplexing with space and frequency index modulation," 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Istanbul, 2017, pp. 1-5.
[12] M. Towliat and S. M. J. Asgari Tabatabaee, "GFDM Interference Mitigation Without Noise Enhancement," in IEEE Communications Letters, vol. 22, no. 5, pp. 1042-1045, May 2018.
[13] I. Gaspar, N. Michailow, A. Navarro, E. Ohlmer, S. Krone and G. Fettweis, "Low Complexity GFDM Receiver Based on Sparse Frequency Domain Processing," 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, 2013, pp. 1-6.
[14] A. Farhang, N. Marchetti and L. E. Doyle, "Low complexity GFDM receiver design: A new approach," 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 4775-4780.
[15] A. Farhang, N. Marchetti and L. E. Doyle, "Low-Complexity Modem Design for GFDM," in IEEE Transactions on Signal Processing, vol. 64, no. 6, pp. 1507-1518, March15, 2016.
[16] M. Matthe, I. Gaspar, D. Zhang and G. Fettweis, "Reduced Complexity Calculation of LMMSE Filter Coefficients for GFDM," 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, 2015, pp. 1-2.
[17] M. Matthe, D. Zhang and G. Fettweis, "Iterative Detection using MMSE-PIC Demapping for MIMO-GFDM Systems," European Wireless 2016; 22th European Wireless Conference, Oulu, Finland, 2016, pp. 1-7.
[18] P. Chen, B. Su and Y. Huang, "Matrix Characterization for GFDM: Low Complexity MMSE Receivers and Optimal Filters," in IEEE Transactions on Signal Processing, vol. 65, no. 18, pp. 4940-4955, 15 Sept.15, 2017.
[19] S. Tiwari and S. S. Das, "Low-Complexity Joint-MMSE GFDM Receiver," in IEEE Transactions on Communications, vol. 66, no. 4, pp. 1661-1674, April 2018.
[20] A. X. Glittas, M. Sellathurai and G. Lakshminarayanan, "A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2402-2406, June 2016.
[21] A. Nimr, M. Matthé, D. Zhang and G. Fettweis, "Optimal Radix-2 FFT Compatible Filters for GFDM," in IEEE Communications Letters, vol. 21, no. 7, pp. 1497-1500, July 2017.

無法下載圖示 全文公開日期 2024/08/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE