簡易檢索 / 詳目顯示

研究生: 梁嘉文
Chia-Wen Liang
論文名稱: 化學氣相沉積氧化鈦晶體及其拉曼光譜分析
Chemical Vapor Deposition And Raman Analysis Of TiO2 Nanocrystals
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 顧洋
Young Ku
洪儒生
Lu-Sheng Hong
呂宗昕
Chuan-Hsin Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 90
中文關鍵詞: 二氧化鈦化學氣相沉積拉曼散射光激發螢光
外文關鍵詞: Titanium oxide, chemical vapor deposition, Raman scattering, Photoluminescence
相關次數: 點閱:252下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文藉由四異丙基鈦前驅物進行化學氣相沉積,研究二氧化鈦奈米桿成長於二氧化錫摻雜氟(FTO)的導電玻璃及SA(100)基板上。藉由控制不同的化學氣相沉積成長條件,可得到金紅石結構、銳鈦礦結構與兩結構共存的二氧化鈦奈米桿。使用SEM來觀察其形貌、XRD判斷二氧化鈦的晶體結構,利用Raman散射來鑑別二氧化鈦之晶相。
金紅石結構的二氧化鈦在FTO上的成長,受到SnO2薄膜的同屬金紅石(301)優選方向的影響,具有(301)的優選方向;在SA(100)基板上,只顯示(002)單一繞射峰訊號,表示桿狀晶體都朝[001]方向成長。而銳鈦礦結構的二氧化鈦,在FTO上的成長並沒有優選方向;但成長於SA(100)上,具有(220)的優選方向。
由MSC model評估金紅石結構之二氧化鈦奈米桿表面片狀晶體的尺寸,所得到的結果與在FE-SEM電鏡圖觀察到的片狀晶體之尺寸吻合。實驗所成長的二氧化鈦奈米桿,其A1g mode的拉曼散射譜線有譜線變寬的情形,且隨著奈米晶體尺寸的變小而漸寬,而殘留應力及奈米晶體內聲子限制效應的影響,造成A1g mode的拉曼散射譜線有紅位移現象。
由光激發螢光光譜分析的結果,成長於FTO上的金紅石結構、銳鈦礦結構及兩結構共存的二氧化鈦,本身晶格的UV放光顯得較微弱,因為受到二氧化鈦奈米桿表面氧缺陷的影響,分別在503nm、515nm、511nm的波長位置會有很強的綠光放光訊號。


In this thesis, TiO2 nanorods have been grown on the substrates of F-doped tin oxide (FTO) conducting glass and sapphire (SA) (100) using chemical vapor deposition (CVD). Through adjusting the growth parameters of CVD, we may obtain nanorods of rutile, anatase, and mixed phases, which are further examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), raman scattering, and photoluminescence (PL).
TiO2 nanorods of rutile structure grown on FTO are influenced by the preferred orientation of underlying tin oxide, which is also of rutile structure. They both exhibit the preferential crystal plane (301). TiO2 nanorods of rutile structure grown on SA(100) display single (002) diffraction peak, indicating the crystals grow in [001] direction. TiO2 nanorods of anatase structure grown on FTO display no preferred orientation, while a preferential crystal plane of (220) on SA(100).
Fitting the raman scattering signal of rutile TiO2 with modified spatial correlation (MSC) model results in the length of phonon confinement, which is consistent with the disk like crystal observed in the SEM micrograph. We also observe the A1g line broadening with the decreasing crystal size, and the red shift in A1g line position due to residual stresses and phonon confinement.
Analysis of PL spectra of TiO2 nanorods indicates a weak contribution in UV emission due to the lattices of rutile, anatase, and the mixed phase. They exhibit strong green emissions at wavelength 503, 515, 511 nm because of the surface oxygen vacancies.

中文摘要……………………………………………….............……...Ⅰ 英文摘要……………………………………………………................Ⅲ 目錄…………………………………………………………................ Ⅳ 圖目錄………………………………………………………................Ⅶ 表目錄……………………………………………………....….... .…ⅩⅡ 第一章 緒論…...…………………………………………............…....1 1.1二氧化鈦晶體結構………………………………………………..….1 1.2二氧化銥晶體特性及應用………………………………………..….4 1.3一維奈米材料…………………………………………………….…..7 1.4一維奈米材料的成長機制…………………………………...….….10 第二章 實驗原理與文獻回顧……………………………..................16 2.1化學氣相沉積法………………………………………………….....16 2.2TTIP反應機制………………….…………………………………..18 2.3文獻回顧……………………………………………………….........19 2.4研究動機………………………………………………….…………21 第三章 實驗步驟和分析方法……………………………........….22 3.1實驗材料與樣品…………………………………………….………22 3.2實驗設備………………………………………………………….…24 3.3實驗流程…………………………….………………………….…...26 3.4實驗步驟…………………………………………………………….27 3.4.1晶片潔淨處理……………………………………………………27 3.4.2FTO導電玻璃退火處理…………………………………….…...27 3.4.3二氧化鈦奈米桿之沉積步驟……………………………........…28 3.5分析儀器…………………………………………………………….30 第四章 結果與討論…………………………………………...........35 4.1二氧化鈦一維奈米桿成長與分析……….…………………………35 4.1.1二氧化鈦奈米桿成長形貌FE-SEM電鏡圖………...………….36 4.1.2二氧化鈦奈米桿XRD分析……………………………………..45 4.1.3二氧化鈦奈米桿Raman分析……………………………….…..49 4.2二氧化鈦奈米桿成長於不同退火溫度的FTO之影響…....….......54 4.2.1 FTO退火處理…………………………………………………...54 4.2.2二氧化鈦奈米桿成長於不同退火溫度的FTO…………………56 4.3利用SC model分析拉曼散射特性……...............…………………60 4.3.1分析樣品的成長條件………………………..…………………..60 4.3.2 SC model分析方程式………………...…………………………62 4.3.3 SC model分析結果探討……………...…………………………64 4.4二氧化鈦奈米桿PL激發光譜分析………...........................……...70 4.4.1金紅石結構二氧化鈦奈米桿PL激發光譜分析………….……70 4.4.2銳鈦礦結構二氧化鈦奈米桿PL激發光譜分析…….…………74 4.4.3金紅石結構與銳鈦礦結構共存的PL激發光譜分析……….…77 第五章 結論…...…………………......................................................79 參考文獻………..........................................…………………………..81

1. Labouriau,A.,andW.L.Earl,“Titanium Solid-State NMR in Anatase Brookite and Rutile”, Chem. Phys. Lett. , Vol.270, No3-4, pp.278-284(1997).
2. Sekiya, T. , S. Ohta, S. Kamei, M. Hanakawa, and S. Kurita, “Raman Spectroscopy and Phase Transition of Anatase TiO2 Under High Pressure”, J. Phys. Chem. Solids, Vol. 62, No. 4, pp. 717-721(2001).
3. Hossks, N. ,T. Sekiya and S. Kurita, “Excitonic State in Anatase TiO2 Single Crystal”, J. Lumin. , Vol. 72-74, pp. 874-875 (1997).
4. Swamy, V. , and L. S. Dubrovinsky, “Bulk Modulus of Anatase”, J. Phys. Chem. Solids, Vol. 62, No. 4, pp. 673-675 (2001).
5. Okimura, K. , “Low Temperature Growth of Rutile TiO2 Films In Modified RF Magnetron Sputtering”, Surf. Coat. Technol. , Vol. 135, No. 2-3, pp. 286-290 (2001).
6. Burgess, D. R. , T. J. Anderson, P. A. Morris Hotsenpiller, and J. L. Hohman, “ Solid Precursor MOCVD of Heteroepitaxial Rutile Phase TiO2 ”, J. Cryst. Growth, Vol. 166, No. 1, pp. 763-768 (1996).
7. JCPDS card no. 77-0441, International Centre for Diffraction Data, Newtown Square, PA, USA.
8. JCPDS card no. 83-2243, International Centre for Diffraction Data, Newtown Square, PA, USA.
9. G. Blondeau, “ Influence of Copper Addition on Optical Properties of TiO2”, J. Electrochem. Soc. , 126, 1592(1979).
10. Carl. P. Fictorie, “Kinetic and mechanistic study of the chemical vapor deposition of titanium dioxide thin films using tetrakis -( isopropoxo )-tita-nium(IV)”, J. Vac. Sci. Technol. A12, 1108 -1113(1994).
11. Hirofumi Takikawa, “Properties of titanium oxides film prepared by reactive cathodic vacuum arc deposition”, Thin Soild Films, 348, 145-151(1999).
12. H. J. Frenck, “ Deposition of TiO2 thin films by plasma enhanced decomposition of tetraiopropya titanate”, Thin Solid Films, 201, 327-335(1991).
13. K. S. Yeung and Y. W. Lan, “A simple chemical vapor deposition method for depoiting thin TiO2 films”, Thin Solid Films, 109, 169-178(1983).
14. T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda and R. Miyagawa, “Ion-beam modification of TiO2 film to multilayered photocatalyst”, Nuclear Instruments and Methods in Physics Research B 148 (1999) 758-761.
15. S. Schiller, “ Reactived d.c. sputtering with the magnetron- plasmatron for tantalum pentoxide and titanium dioxide films”, Thin Soli d Films, 63, 369-375(1979).
16. Tae-Kyung Won, “Compositional Analysis and Capacitance-Voltage Properties of TiO2 Films by Low Pressure Metal-Organic Chemival Vapor Deposition”, J. Electrochem. Soc., 139, 3284 -3288(1992).
17. Takashi Fuyuki and Hiroyuki Matsunami, “Electronic Properties of Interface between Si and TiO2 Deposited at Very Low Temperature”, Janpanese Journal of Applied Physics, 25, 1288-1291(1986).
18. K. S. Yeung and Y. W. Lan, “A simple chemical vapor deposition method for depoiting thin TiO2 films”, Thin Solid Films, 109, 169-178(1983).
19. Kiichiro Kamata, “ Rapid formation of TiO2 films by a conventional CVD method”, Journal of Materials Science Letters, 9, 316 -319(1990).
20. S. Iijima, “Helical of Microtubules of Graphitic Carbon”, Nature, 354 (1991) 56-61.
21. Chi-Chi Shan, Dah-Shyang Tsai, Ying-Sheng Huang, Sie-Hong Jian, Chia-Liang Cheng, “Pt-Ir-IrO2NT thin-wall electrocatalysts derived from IrO2 nanotubes and their catalytic activities in methanol oxidation”, Chem. Mater. 19 (2007) 424-431.
22. Yuan-Fu Ke, Dah-Shyang Tsai and Ying-Sheng Huang, “Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates”, J. Mater. Chem., 15 (2005) 2122–2127.
23. Chih-Sung Hsieh, Dah-Shyang Tsai, Reui-San Chen, Ying-Sheng Huang “Preparation of ruthenium dioxide nanorods and their field Emission characteristics” Appl. Phys. Lett., 85 (2004) 3860-3862.
24. T.W. Chaoa, C.J. Liu, A.H. Hsieh, H.M. Chang, Y.S. Huang, D.S. Tsai, “Quartz crystal microbalance sensor based on nanostructured IrO2”, Sensors and Actuators B 122 (2007) 95–100.
25. Alexandru Korotcov, Ying-Sheng Huang, Tsung-Ying Tsai, Dah-Shyang Tsai and Kwong-Kau Tiong, “Effect of length, spacing and morphology of vertically aligned RuO2 nanostructures on field-emission properties”, Nanotechnology 17 (2006) 3149–3153.
26. Siddhartha K. Pradhan, Philip J. Reucroft, Fuqian Yang, Alan Dozier “Growth of TiO2 nanorods by metalorganic chemical vapor deposition”, Journal of Crystal Growth, 256, (2003) 83-88.
27. Tomoko Kasuga, Masayoshi Hiramatsu, Akihiko Hoson, Toru Sekino, Koichi Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, (1998) 3160-3163.
28. P. Yang, C. M. Lieber, “Nanorod-superconductor composites: A pathyway to materials with high critical current densities”, Science, 273, (1996) 1836-1840.
29. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, “SiC-SiOx heterojunctions in nanowires”, J. Mater. Chem., 9 (1999) 3173-3178.
30. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett., 303 (1999) 311-314.
31. J. Hwang, B. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, and S. kim, “Al2O3 Nanotubes Fabrication by Wet Etching of ZnO/Al2O3 Core/Shell Nanofibers”, Adv. Mater., 16, (2004) 422-425.
32. Z. Yuan, H. Huang, and S. Fan, “Regular Alumina Nanopillar Arrays”, Adv. Mater., 14 (2002) 303-306.
33. Gates, B., Mayers, B., Cattle, B., Xia, Y., “Synthesis and characterization of uniform nanowires of trigonal selenium”, Advanced Functional Materials, 12 (3) (2002) 219-227.
34. Gates, B., Yin, Y., Xia, Y., “A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm”, Journal of the American Chemical Society, 122 (50) (2000) 12582-12583.
35. Martin, C.R., “Template Synthesis of Electronically Conductive Polymer Nanostructures”, Accounts of Chemical Research, 28 (2), (1995) 61-66.
36. Wagner, R.S., Ellis, W.C., “VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH”, Appl. Phys. Lett., 4, (1964) 89.
37. Wu, Y., Yang, P., “Direct observation of vapor-liquid-solid nanowire growth” Journal of the American Chemical Society, 123 (13) (2001) 3165-3166.
38. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, Y.W. Chung, “Semiconductor Nanowires from Oxides”, J. Mater. Res.,14, (1999) 4503-4507.
39. Lu, Y., Yin, Y., Li, Z.-Y., Xia, Y. “Synthesis and Self-Assembly of Au/SiO Core-Shell Colloids”, Nano Letters, 2 (7) (2002) 785-788.
40. X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang, C. Z. Wang L. D. Zhang, ”Synthesis and Photoluminescence of Single-Crystalline In2O3 Nanowires”, J. Mater. Chem., 12, 5 (2002) 1603-1605.
41. X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng and L. D. Zhang, “Large-Scale Synthesis of In2O3 Nanowires“, Appl. Phys. A., 74, 3 (2002) 437-439.
42. 莊達人,VLSI製造技術,第217-218頁,民國九十一年
43. C.P. Fictorie , J.F. Evans , W.L. Gladfelter , J. Vac. Sci. Technol. A 12 (1994) 1108.
44. Kyoung-Ho Ahn , Young-Bae Park , Dong-Wha Park, “ Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP“ , Surface and Coatings Technology 171 (2003) 198–204.
45. Fujishima, A., and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol. 238, pp. 37-38 (1972).
46. Serpone , N., “Brief Introductory Remarks on Heterogeneous Photocatalysis”, Sol. Energy Mater. Sol. Cells, Vol. 38, No. 1-4, pp. 369-379 (1995) .
47. Litter, M. I., “Review Heterogeneous Photocatalysis Transition Metal Ions in Photocatalytic Systems”, Appl. Catal., B, Vol. 23, No. 2-3, pp. 89-114 (1999).
48. R. W. Matthews : J. Phys. Chem., 91, 3328, 1987.
49. S. Chen, M.G. Mason, H.J. Gysling, G.R. Paz-Pujalt, T.N. Blanton, T. Castro, K.M. Chen, C.P. Fictorie, W.L. Gladfelter, A. Franciosi, P.I. Cohen, J.F. Evans, J. Vac. Sci. Technol. 11 (1993) 2419–2429.
50. G.W. Rice, J. Am. Ceram. Soc. 70 (1987) c-117.
51. H.-Y. Lee, H.-G. Kim, Thin Solid Films 229 (1993) 187.
52. C.P. Fictorie, J.F. Evans,W.L. Gladfelter, J. Vac. Sci. Technol. A 12 (1994) 1108.
53. D. Byun, Y. Jin, B. Kim, J.K. Lee, D. Park, J. Hazard. Mater. B73 (2000) 199.
54. T. Ohno , F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, J. Photochem.Photobiol. A: Chemistry 118 (1998) 41-44.
55. T. Ohno , F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, J. Photochem. Photobiol. A: Chemistry 127 (1999) 107-110.
56. Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H. J Photochem Photobiol A 1995;85:247–55.
57. Shiyanovskaya I, Hepel M. J Electrochem Soc 1998;145:3981–5.
58. Marci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM. J Phys Chem B 2001;105:1026–32.
59. Bedja I, Kamat PV. J Phys Chem 1995;99:9182–8.
60. K. Vinodgopal, P.V. Kamat, Enhanced rates of photocatalytic degradation of an azo-dye using TiO2/SnO2 coupled semiconductor thin films, Environ. Sci. Technol. 29 (1995) 841.
61. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma , Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser , Applied Surface Science 253 (2007) 7497–7500.
62. Richter H,Wang ZP,Ley L.Solid State Commun.1981;39:625.
63. Kittel C. Introduction to Solid State Commun. 1986;58:739.
64. Alexandru Korotcov, Hung-Pin Hsu, Ying-Sheng Huang and Dah-Shyang Tsai, Raman scattering characterization of well-aligned IrO2 nanocrystals grown on sapphire substrates via reactive sputtering , J. Raman Spectrosc. 2006; 37: 1411–1415.
65. Krusin-Elbaum, L., M. Wittmer, and D. S. Yee, “Characterization of Reactively Sputtered Ruthenium Dioxide for Very Large Scale Integrated Metallization”, Appl. Phys. Lett., Vol. 50, No. 26, pp. 1879-1881 (1987).
66. Kan Hachiya , Junya Kondoh , “Photoluminescence from localized states in rutile by Ar+- ion laser excitation”, Physica B 334 (2003) 130-134.
67. A. Suisalu , J. Aarik , H. Mandar , I. Sildos , “Spectroscopic study of nanocrystalline TiO2 thin films grown by atomic layer deposition” , Thin Solid Films 336 (1998) 295-298.
68. Yunxia Jin , Guanghai Li ,Yong Zhang , Yunxia Zhang and Lide Zhang , “Photoluminescence of anatase TiO2 thin films achieved by the addition of ZnFe2O4”,J. Phys : Condens. Matter 13(2001)L913-L918.
69. R Plugaru , A Cremades and J Piqueras , “ The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2” , J. Phys:Condens. Matter 16 (2004) S261-S268.
70. Jyh-Ming Wu and Han C. Shih , “Growth of TiO2 nanorods by two stop thermal evaporation” , J. Vac. Sci. Technol. B23(5) .
71. Hiromitsu Nakajima , Toshiyuki Mori , Qing Shen , Taro Toyoda , “Photoluminescence study of mixtures of anatase and rutile TiO2 nanoparticles : Influence of charge transfer between the nanoparticles on their photoluminescence excitation bands” Chemical Physics Letter 409 (2005) 81-84.
72. Hiromitsu Nakajima and Toshiyuki Mori , “Influence of platinum loading on photoluminescence of TiO2 powder “ , Jouranl of applied physics ,Volume 96.
73. Kan Fujihara , Shinobu Izumi , Teruhisa Ohno , Michio Matsumura,”Time-resolved photoluminescence of particulat TiO2 photocatalysts suspended in aqueous solutions” , Journal of Photochemistry and Photobiology A: Chemistry 132(2000) 99-104.
74. Jae Han Jho , Dong Hyun Kim , Sun-Jae Kim , Kyung Sub Lee , “Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process” , Journal of Alloys and Compounds 459(2008)386-389.
75. P. Madhu Kumar , S. Badrinarayanan , Murali Sastry , “Nanocrystalline TiO2 studied by optical , FTIR and X-ray photoelectron spectroscopy : correlation to presenc of surface states” , Thin Solid Films 358(2000)122-130.
76. N. Serpone , D. Lawless , R. Khairutdinov , J. Phys. Chem. 99 (1995) 16646.
77. H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, J. Applied Physics 75 (1994) 2042-2047.
78. Y. Lei , L. D. Zhang , G. W. Meng , G. H. Li , X. Y. Zhang , C. H. Liang , W. Chen, and S. X. Wang ,“Preparation and photoluminescence of highly ordered TiO2 nanowire arrays” , Applied Physics Letters , volume 78.
79. M. K. Nowotny, L. R. Sheppard, T. Bak, and J. Nowotny” Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts”, J. Phys. Chem. C 2008, 112, 5275-5300.

QR CODE