簡易檢索 / 詳目顯示

研究生: 陳怡瑄
Yi-Hsuan Chen
論文名稱: 三重相移控制之寬範圍雙主動全橋式電路研製
Dual-Active-Bridge Converter with Triple-Phase-Shift Control for a Wide Operating Voltage Range
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 林景源
Jing-Yuan Lin
謝耀慶
Yao-Ching Hsieh
張佑丞
Yu-Chen Chang
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 118
中文關鍵詞: 雙主動全橋式轉換器三重相移控制法零電壓切換
外文關鍵詞: Dual-active-bridge converter, triple-phase-shift modulation, soft switching
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨為研究雙主動全橋式轉換器,針對使用三重相移控制法之寬輸出電壓範圍轉換,進行全輸出功率範圍效率最佳化與演算法改善。本文將深入探討三重相移控制法之原理、動作方式、模式定義與不同模式下之轉移函數與電路特性分析,並且介紹最小峰值電流控制法及最小有效值電流控制法等效率最佳化之演算法原理與數學推導;其中,針對最小峰值與有效值電流控制法在特定功率以下無法達到全範圍零電壓切換的缺失,提出一新控制策略,使轉換器能於全範圍達成零電壓切換。最後,以寬範圍輸出電壓之規格設計功率元件,並實作最大輸出功率為15 kW之雙主動全橋式轉換器。並利用德州儀器所開發之數位信號處理器實現演算法閉迴路控制,以實測結果和理論相互印證。


An optimal modulation scheme with triple-phase-shift (TPS) control that increase efficiency in the whole load range is presented for a Dual active bridge (DAB) converter under wide output voltage range conditions. This thesis provides a comprehensive analysis of the DAB with TPS modulation, identifying all the switching modes to operate the DAB where expressions for the transfer functions, the peak inductor current and RMS inductor current are provided. An analysis of Minimum Peak Current and Minimum RMS Current Control also are investigated, on this basic, All-ZVS modulation scheme is originally proposed to improve light-load efficiency and reducing the switching loss. A 15 kW prototype circuit is applied, and experimental results are presented to validate that the modulation and efficiency improvement are realized by applying the optimized modulation scheme. The experimental results also verify the effectiveness of the closed-loop control strategy.

目錄 摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文大綱 第二章 雙主動全橋式轉換器 2.1 雙主動全橋式轉換器介紹 2.2 相移控制法介紹 2.2.1 單相移控制 2.2.2 擴展相移控制 2.2.3 三重相移控制 第三章 三重相移控制法分析與最佳化 3.1 三重相移控制法之模式定義 3.2 三重相移控制動作原理與功率函數 3.2.1 三重相移控制動作區間 3.2.2 三重相移控制功率函數推導 3.3 三重相移有效值電流與峰值電流分析 3.4 演算法控制 3.4.1 最小峰值與最小有效值電流控制法 3.4.2 全範圍零切控制法 3.4.3 全範圍效率最佳化控制策略 3.5 三重相移控制與單相移控制之比較 第四章 電路研製 4.1 電路規格 4.2 電路元件設計 4.2.1 變壓器圈數比N與電壓轉換比M 4.2.2 儲能電感設計 4.2.3 隔離變壓器設計 4.2.4 功率開關元件設計 4.3 數位控制規劃與設計 4.3.1 韌體流程規劃 4.3.2 開機保護程序 第五章 電路實驗結果分析 5.1 模擬與實驗結果 5.1.1 全範圍效率最佳化控制法測試與驗證 5.1.2 全範圍零電壓切換控制法之驗證 5.1.3 單相移控制與三重相移控制波形比較 5.1.4 開機測試 5.2 電路實體圖 5.3 效率量測 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻  

[1] G. Fontes, C. Turpin, S. Astier and T. A. Meynard, “Interactions Between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack,” in IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 670-678, March 2007.
[2] B. Zhao, Q. Song, W. Liu and Y. Sun, “A Synthetic Discrete Design Methodology of High-Frequency Isolated Bidirectional DC/DC Converter for Grid-Connected Battery Energy Storage System Using Advanced Components,” in IEEE Transactions on Industrial Electronics, vol. 61, no. 10, Oct. 2014.
[3] Tomas Manez, K, Advances in Bidirectional DC-DC Converters for Future Energy Systems. Technical University of Denmark, 2018.
[4] L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli and D. Diaz, “Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle With Charging Current Containing Low Frequency Ripple,” in IEEE Transactions on Power Electronics, vol. 30, no. 12, Dec. 2015.
[5] J. Everts, F. Krismer, J. Van den Keybus, J. Driesen and J. W. Kolar, “Optimal ZVS Modulation of Single-Phase Single-Stage Bidirec-tional DAB AC–DC Converters,” in IEEE Transactions on Power Electronics, vol. 29, no. 8, Aug. 2014.
[6] H. van Hoek, M. Neubert and R. W. De Doncker, “Enhanced Modulation Strategy for a Three-Phase Dual Active Bridge—Boosting Efficiency of an Electric Vehicle Converter,” in IEEE Transactions on Power Electronics, vol. 28, no. 12, Dec. 2013.
[7] L. Roggia, L. Schuch, J. E. Baggio, C. Rech and J. R. Pinheiro, “Integrated Full-Bridge-Forward DC–DC Converter for a Resi-dential Microgrid Application,” in IEEE Transactions on Power Electronics, vol. 28, no. 4, April 2013.
[8] F. Krismer and J. W. Kolar, “Accurate Power Loss Model Deriva-tion of a High-Current Dual Active Bridge Converter for an Au-tomotive Application,” in IEEE Transactions on Industrial Elec-tronics, vol. 57, no. 3, March 2010.
[9] Gonzalez Ortega, Alberto, “Dual active bridge DC-DC converter in photovoltaic applications,” Science in Electrical and Computer Engineering in the Undergraduate College of the University of Il-linois at Urbana-Champaign, 2018
[10] H. Bai, Z. Nie, and C.Mi, “Experimental comparison of traditional phaseshift, dual-phase-shift, and model-based control of isolated bidirectional dc-dc converters,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1444–1449, Jun. 2010.
[11] H. Bai and C. Mi, “Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC–DC Converters Using Novel Dual-Phase-Shift Control,” in IEEE Transactions on Power Electronics, vol. 23, no. 6, Nov. 2008.
[12] B. Zhao, Q. Song and W. Liu, “Power Characterization of Isolated Bidirectional Dual-Active-Bridge DC–DC Converter With Du-al-Phase-Shift Control,” in IEEE Transactions on Power Elec-tronics, vol. 27, no. 9, Sept. 2012.
[13] H. Wen, W. Xiao and B. Su, “Nonactive Power Loss Minimization in a Bidirectional Isolated DC–DC Converter for Distributed Power Systems,” in IEEE Transactions on Industrial Electronics, vol. 61, no. 12, Dec. 2014.
[14] B. Feng, Y. Wang, and J. Man, “A novel dual-phase-shift control strategy for dual-active-bridge DC–DC converter,” in Proc. 40th Annu. Conf. IEEE Ind. Electron. Soc., 2014.
[15] M. Jafari, Z. Malekjamshidi and J. G. Zhu, “Analysis of operation modes and limitations of dual active bridge phase shift converter,” 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, 2015.
[16] A. Rodríguez, A. Vázquez, D. G. Lamar, M. M. Hernando and J. Sebastián, “Different Purpose Design Strategies and Techniques to Improve the Performance of a Dual Active Bridge With Phase-Shift Control,” in IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 790-804, Feb. 2015.
[17] F. Yazdani, S. Haghbin, M. Zolghadri and T. Thiringer, “Accurate analysis of a single-phase dual active bridge converter for ZVS and deadband conditions,” 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2017.
[18] H. Shi et al., “Minimum-Backflow-Power Scheme of DAB-Based Solid-State Transformer With Extended-Phase-Shift Control,” in IEEE Transactions on Industry Applications, vol. 54, no. 4, pp. 3483-3496, July-Aug. 2018.
[19] B. Zhao, Q. Yu and W. Sun, “Extended-Phase-Shift Control of Isolated Bidirectional DC–DC Converter for Power Distribution in Microgrid,” in IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4667-4680, Nov. 2012.
[20] H. Shi et al., “Minimum-Backflow-Power Scheme of DAB-Based Solid-State Transformer With Extended-Phase-Shift Control,” in IEEE Transactions on Industry Applications, vol. 54, no. 4, pp. 3483-3496, July-Aug. 2018.
[21] Q. Bu and H. Wen, “Triple-Phase-Shifted Bidirectional Full-Bridge Converter with Wide range ZVS,” 2018 IEEE International Con-ference on Power Electronics, Drives and Energy Systems (PED-ES), 2018, pp. 1-6, doi: 10.1109/PEDES.2018.8707893.
[22] S. Shao, M. Jiang, W. Ye, Y. Li, J. Zhang and K. Sheng, “Optimal Phase-Shift Control to Minimize Reactive Power for a Dual Active Bridge DC–DC Converter,” in IEEE Transactions on Power Elec-tronics, vol. 34, no. 10, pp. 10193-10205, Oct. 2019, doi: 10.1109/TPEL.2018.2890292.
[23] J. Huang, Y. Wang, Z. Li and W. Lei, “Unified Triple-Phase-Shift Control to Minimize Current Stress and Achieve Full Soft-Switching of Isolated Bidirectional DC–DC Converter,” in IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4169-4179, July 2016.
[24] A. Tong, L. Hang, G. li, X. jiang, and S. Gao, “Modeling and analysis of dual-active-bridge isolated bidirectional dc/dc converter to minimize rms current with whole operating range,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1–1, 2017.
[25] C. Calderon, A. Barrado, A. Rodriguez, A. Lazaro, M. Sanz and E. Olías, “Dual active bridge with triple phase shift, soft switching and minimum RMS current for the whole operating range,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017.
[26] X. Liu et al., “Novel Dual-Phase-Shift Control With Bidirectional Inner Phase Shifts for a Dual-Active-Bridge Converter Having Low Surge Current and Stable Power Control,” in IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 4095-4106, May 2017.
[27] Calderon, C., Barrado, A., Rodriguez, A., Alou, P., Lazaro, A., Fernandez, C. and Zumel, P. “General Analysis of Switching Modes in a Dual Active Bridge with Triple Phase Shift Modulation.”, Energies,2018.
[28] C. Calderon, A. Barrado, A. Rodriguez, A. Lazaro, M. Sanz and E. Olías, “Dual active bridge with triple phase shift, soft switching and minimum RMS current for the whole operating range,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 4671-4676, doi: 10.1109/IECON.2017.8216805.
[29] D. Das and K. Basu, “Modulation Strategy to Minimise RMS and Peak Currents in Dual Active Bridge Converter,” 2020 IEEE En-ergy Conversion Congress and Exposition (ECCE), 2020.
[30] F. Krismer and J. W. Kolar, “Closed Form Solution for Minimum Conduction Loss Modulation of DAB Converters,” in IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 174-188, Jan. 2012.
[31] Y. A. Harrye, K. H. Ahmed, G. P. Adam and A. A. Aboushady, “Comprehensive steady state analysis of bidirectional dual active bridge DC/DC converter using triple phase shift control,” 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014.
[32] D. Das and K. Basu, “Optimal Design of a Dual Active Bridge DC-DC Converter,” in IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2020.3044781.
[33] Colonel Wm. T. McLyman, Transformer and InductorDesign Handbook Fourth Edition, Taylor and Francis Group, LLC, 2011.
[34] Sathishkumar, P.; Krishna, T.N.V.; Khan, M.A.; Zeb, K.; Kim, H.-J, “Digital Soft Start Implementation for Minimizing Start up Tran-sients in High Power DAB-IBDC Converter,” Energies 2018.
[35] Choi, H.-J.; Jung, J.-H, “Practical design of dual active bridge converter as isolated bi-directional power interface for solid state transformer applications,” J. Electr. Eng. Technol. 2016.
[36] Z. Zhu, J. Liu, F. Xiao, P. Chen and Q. Ren, “Start-up Procedure and Soft-starting Strategy for Dual Active Bridge Converter,” 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2020.

無法下載圖示 全文公開日期 2024/08/24 (校內網路)
全文公開日期 2024/08/24 (校外網路)
全文公開日期 2024/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE