簡易檢索 / 詳目顯示

研究生: 蕭世雄
Shih-syong Siao
論文名稱: 甲烷、甲醇、二氧化碳以及氨在IrO2(110)表面之吸附與反應的密度泛涵理論計算研究
DFT study of CH4, CH3OH, CO2, and NH3 Adsorption and Reaction on IrO2(110) Surfaces
指導教授: 江志強
Jyh-chiang Jiang
口試委員: 何嘉仁
Jia-jen Ho
王伯昌
Bo-cheng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 118
中文關鍵詞: 甲醇甲烷密度泛涵理論計算二氧化銥二氧化碳
外文關鍵詞: CO2, CH3OH, CH4, DFT, IrO2, NH3
相關次數: 點閱:221下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究採用密度泛涵理論的計算來探討二氧化銥(110)表面上甲烷、甲醇、二氧化碳以及氨的吸附與反應。計算結果顯示氫原子在二氧化銥富氧表面的最大擴散能障是0.43 eV。甲烷在二氧化銥潔淨表面與富氧表面的吸附能分別是 -0.48 eV與 -0.70 eV,而甲烷脫第一個氫原子的能障分別是0.32 eV與0.33 eV。甲烷脫第一個氫原子的能障明顯小於甲烷的吸附能,代表甲烷較易裂解C-H鍵而不是脫附表面。甲醇解離成CH3O,藉由CH3O的碳原子和O原子與二氧化銥表面的兩個Ir原子產生作用力,裂解C-H鍵直至形成CO,其速率決定步驟是CHO脫氫形成CO,能障為0.88 eV。CO2在表面缺陷處的吸附能大且C=O斷鍵能障小,反之,CO2在Ircus原子上的吸附能小,C=O斷鍵能障大(0.77 ~ 1.32 eV)。氨能藉由氮原子與表面的Ir原子產生作用力吸附在IrO2富氧表面,氫原子也會與Obr或Ocus原子產生氫鍵。分解至剩下氮原子,易與Ocus氧原子結合為NO,進一步再與氮原子結合為N2O後即脫附表面,而氨氧化之產物NO2、N2O以及N2的選擇率受到Ocus原子以及氮原子覆蓋率影響。


We used density functional theory (DFT) to investigate the adsorptions and reactions of CH4, CH3OH, CO2 and NH3 on the IrO2(110) surfaces. Our calculations indicated that the dehydrogenation reactions were affected by the hydrogen diffusion. The diffusion barrier of the hydrogen on IrO2(110) surface is 0.43 eV. Our calculated results show that the adsorption energies of methane on the stoichiometric and oxygen-rich IrO2 (110) surfaces are -0.48 and -0.70 eV, respectively, and the barrieres of the first dehydrogenation are 0.32 and 0.33 eV, respectively. The barrier for the first methane activation step is relatively low, lower than the dissociation energy, which means the adsorbed methane can proceed the C–H bond scission rather than desorption on IrO2 (110) surfaces. CH3OH was dehydrogenated on the IrO2(110) surface which barrier of the rate determining step of CH3OH dehydrogenation is 0.88 eV. CO2 molecule can be captured by the Obr vacant - IrO2(110) surface, and the C=O bond scission of this adsorbed CO2 molecule is easily to proceed. Because hydrogen diffusion on stoichiometric IrO2(110) surface is difficult, the dehydrogenation of NH3 only occurred on the oxygen-rich IrO2(110) surface. After NH3 dehydrogenation, N-atom-containing oxidation products were formed by recombination with neighboring Ncus (N2), Ocus (NO), or NOcus (N2O). The selectivity of N-atom-containing products is controlled by the coverage of Ocus atoms.

摘要 ……………………………………………………………………I 英文摘…………………………………………………………………II 目錄 …………………………………………………………………VI 圖目錄 ………………………………………………………………VII 表目錄 ……………………………………………………………XII 第一章 緒論 …………………………………………………………1 1.1 前言…………………………………………………1 1.2 甲烷 ……………………………………………………1 1.3 甲醇 ……………………………………………………2 1.4 CO2 ……………………………………………………2 1.5 氨 ……………………………………………………3 1.6 IrO2 ……………………………………………………4 1.7 研究動機 ……………………………………………5 第二章 理論計算方法………………………………………………7 2.1 計算方法………………………………………………7 2.1.1密度泛涵理論……………………………………8 2.1.2 LDA與GGA……………………………………9 2.1.3 Bloch定理………………………………………10 2.1.4 Plane-wave basis set……………………………11 2.1.5贗勢與PAW ……………………………………11 2.2 建立模型………………………………………………13 2.2.1 IrO2 單元晶胞……………………………………14 2.2.2 IrO2 (110)表面……………………………………15 第三章 結果與討論…………………………………………………17 3.1 氫原子在表面上的擴散………………………………17 3.2 甲烷在IrO2(110)表面的吸附及反應…………………21 3.2.1 甲烷在IrO2(110)表面的化學吸附……………22 3.2.2 甲烷在IrO2(110)表面的脫氫反應……………36 3.3 甲醇在IrO2(110)表面的吸附及反應…………………66 3.3.1甲醇在IrO2(110)表面的吸附……………………66 3.3.2甲醇在IrO2(110)表面的反應……………………67 3.4 CO2在IrO2(110)表面的吸附與反應…………………71 3.4.1 CO2在IrO2(110)表面的吸附……………………71 3.4.2 CO2在IrO2(110)表面的反應……………………74 3.5 氨及其氧化物在IrO2(110)表面的吸附與反應………77 3.5.1. NHx(x=0-3)與N2在IrO2(110)表面的吸附……77 3.5.2. 氨在IrO2(110)表面的反應…………………82 第四章 結論………………………………………………………95 第五章 參考文獻………………………………………………97

1. National Hydrogen Energy Roadmap; U.S. Department of Energy
(DOE): Washington, DC (2002)
2. D. Mei, and N. A. Deskins, J. Phys. Chem. C, 111, 10514 (2007)
3. S. Sakong and A. Gross, J. Phys. Chem. A, 111, 8814 (2007)
4. G. C. Wang and Y. H. Zhou, J. Phys. Chem. B, 109, 12431 (2000)
5. R. Sanchez de Armas, and J. Oviedo, J. Phys. Chem. C, 111, 10023 (2007)
6. C. J. Zhang and P. Hu, J. Chem. Phys., 115, 15, 7182 (2001)
7. Y. Ishikawa, M. S. Liao, and C. R. Cabrera , Surface Science 463 , 66 (2000)
8. J. Greeley and M. Macrikakis, J. AM. Chem. Soc., 124, 7193 (2002).
9. C. J. Weststrate, W. Ludwig and J. W. Bakker, J. Phys. Chem. C, 111, 7741 (2007)
10. Gang. L, Anderson. B. G, van Grondelle. J, van Santen. R. A, van Gennip. W. J. H, Niemantsverdriet. J. W, Kooyman. P. J, Koester. A, Brongersma. H. H. J. Catal. 206, 60 (2002)
11. Avril. H, Mike. Clemmet, Elaine. G, Alane V. J, Access to chemistry, Royal Society of Chemistry, 250 (1999).
12. L. F. Mattheiss, Phys. Rev. B, Vol. 13, 2433 (1976)
13. W. D. Ryden and A. W. Lawson, C. C. Sartain, Phys. Rev. B, Vol. 1, 1494 (1970)
14. R. C. Weast (Ed.) Handbok and Chemistry and Physics, F146 (1989)
15. T. Nakamura, K. Nakao, A. Kamisawa, H. Takasu, Jpn. J. Appl. Phys., Part 1, Vol. 34, p.5184 (1995)
16. T. Tamura, K. Matsuura, H. Ashida, K. Kondo, S. Otani, Appl. Phys. Lett., Vol. 74, NO. 22, p.3395 (1999)
17. T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Appl. Phys. Lett., Vol.65 p.1522 (1994)
18. A. Osaka, T. Takatsuna, Y. Miura, J. Non-crystalline Solids, Vol. 178 P.313 (1994)
19. N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, Thin Solid Films, Vol. 235, p.35 (1993)
20. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka, J. Electrochem. Soc., Vol. 147 NO. 6, p. 2018 (2000)
21. R. S. Chen, Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S. Tsai, K. K. Tiong, Appl. Phys. Lett., 84 NO.9, p.1552 (2004)
22. A. Karthugeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, S. K. Sharma, I. Eisele, Sens, Actuators B, 85 p. 145 (2002)
23. S. Gottesfeld, J. D. E. McIntyre, G. Beni, J. L. Shay, Appl. Phys. Lett. 33, 208-210 (1978)
24. Th. Pauporté, R. Durand, J. Appl. Electrochem. 30, 35-41 (2000).
25. A. Azens, J. Isisorsson, R. Karmhang, C. G. Granqvist, Thin Solid Films. 422, 1-3. (2002)
26. A. Azens, C. G. Granqvist, Appl. Phys. Lett. 81, 928-929. (2002)
27. B.R. Chalamala, Y. Wei, R.H. Reuss, S. Aggarwal, B.E. Gnade, R. Ramesh, J.M. Bernhand, E.D. Sosa, D.E. Golden, Appl. Phys. Lett. 74, 1394. (1999)
28. B.R. Chalamala, Y. Wei, R. H. Reuss, S. Aggarwal, S.R. Perusse, B.E. Gnade, Ramesh, J. Vac. Sci. Technol. B. 18, 1919. (2000)
29. R.S. Chen, H.M. Chang, Y.S. Huang, d.S. Tsai, S. Chattopadhysy, K.H. Chen, J. Cryst. Growth. 271, 105. (2004)
30. A. Karthugeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, S. K. Sharma, I. Eisele, Sens, Actuators B, 85 pp. 145-153 (2002)
31. Zhi-Pan. Liu, Stephen J. Jenkins, David A. King, Phys. Rev. Lett, 93, 156102 (2004)
32. Shigeaki. Ono, Takumi. Kikegqwa, Yasuo Ohishi, Phys B, 363, 140-145, (2005)
33. P. F. McMillan, Nature Mater. 1, 19 (2002)
34. J. m. Hu, J. Q. Zhang, C. N. Cao, Int. J. Hydrogen energy, 29 pp. 791-797 (2004)
35. C. P. de Paul, S. Trasatti, J. Electroanal. Chem., pp. 145-151 (2002).
36. A. J. Terezo, E. C. Pereira, Electrochimica Acta, 45 pp. 4351-4358 (2000)
37. M. V. Kortenaar, J. F. Vente, D. J. W. Ijdo, S. Muller, R. Kotz, J. power Sources, 56 pp.51-60 (1995)
38. G. Kresse, J.Hafner, Phys. Rev. B. 47, 558 (1993)
39. G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996)
40. G. Kresse, J. Hafner, Phys. ReV. B. 54, 169 (1996)
41. J. A. White, D. M. Bird, Phys. ReV. B. 50, 4954. (1994)
42. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. ReV. B. 46, 6671 (1992)
43. P. E. Blochl, Phys. ReV. B 1994, 50, 17953. (b) G. Kresse, D. Joubert, Phys. ReV. B. 59, 1758 (1999)
44. A. Clotet, G. Pacchioni, Surf. Sci. 346, 91 (1996)
45. A.Ulitsky,; Elber, R. J. Chem. Phys. 92, 1510 (1990)
46. G. Mills, H. Jo’nsson, G. K. Schenter, Surf. Sci. 324, 305 (1995)
47. G. Henkelman, B. P. Uberuaga, H. J. Jo’nsson, Chem. Phys.113, 9901 (2000)
48. W. J. Hehre, L. Radom, P. V. R. and J. A. Pople, “ab initio Molecular orbital theory”, John Wiley & Sons, New Tork 1986.
49. J. P. LOWE, Quantum chemistry, 2nd ed. Academic Press, New York 1993.
50. S. M. McMurry, Quantum chemistry, Addison-Wesley, New York 1994
51. I. N. Levin, Quantum chemistry, 5th ed. Prentice-Hall, New Jersey 2000.
52. A. Szabo, and N. S. Ostlund, Modern quantum chemistry: Introduction to advanced electronic structure theory, 1993.
53. F. L. Pilar, “Elementary quantum chemistry”, 2nd ed, McGraw-Hill, New York 1990
54. W. Kohn, and L. J. Sham, Phys. Rev. 140, 1133A (1965)
55. P. Hohenberg, and and W. Kohn, Phys. Rev., 136, 8648 (1964)
56. J. P. Perdew, Y. Wang, Phys. Rev. B, 33, 8800 (1986)
57. J. P. Perdew, Y. Wang, Phys. Rev. B, 46, 6671 (1992)
58. D. Vanderbilt, phys. Rev. B, 41, 7892 (1990)
59. JCPDS card no. 15-0870 (IrO2), International Centre for Diffraction Data Newtown Square, PA, USA
60. W.W. Pai , T.Y. Wu, C.H. Lin, B.X. Wang, Y.S. Huang, H.L. Chou. Surf. Sci. 601, 69 (2000)
61. B.S. Bunnik ; G.J. Kramer , J. Catal. 242, 309 (2006)
62. M. Blanco-Reya , S. J. Jenkins , J. Chem. Phys. 130, 014705 (2009)
63. N. Zobela ; F. Behrendt , J. Chem. Phys. 125, 074715 (2006)
64. S. Nave; B. Jackson , J. Chem. Phys. 130, 054701 (2009)
65. M.F. Haroun , P.S. Moussounda , P. Le′gare′ , Catalysis Today. 138, 77(2008)
66. B. Xing; X.Y Pang; G. Chang Wang, Z.F Shang, J. Mol. Catal. A: Chem. 315, 187 (2010)
67. D. Knapp ; T. Ziegler , J. Phys. Chem. C. 112, 17311 (2008)
68. E. Nikolla; J. Schwank; S. Linic , J. Catal. 263, 220(2009)
69. 陳亭傑,一氧化碳、氧氣以及水分子在鉑-銥/氧化銥(110)表面進行吸附作用與化學反應之研究,台灣科技大學化工系 (2006)
70. J. Greeley, M. Mavrikakis, J. Catal. 208, 291 (2002)
71. D. Mei, L. Xu, G. Henkelman, J. Phys. Chem. C, 113, 4522 (2009)
72. G. C. Wang, Y. H. Zhou, Y. Morikawa, J. Nakamura, Z. S. Cai, X. Z. Zhao, J. Phys. Chem. B, 109, 12431 (2005)
73. R. Jiang, W. Guo, M. Li, D. Fu, H. Shan, J. Phys. Chem. C, 113, 4188 (2009)
74. A. Montoya, B. S. Haynes, J. Phys. Chem. 111, 9867 (2007)
75. H. P. Koch, I. Bako, R. Schennach, Surf. Sci. 604, 596 (2010)

QR CODE