簡易檢索 / 詳目顯示

研究生: 莊育錚
Yu-Cheng Chuang
論文名稱: 應用3D電感之電容耦合注入鎖定除頻器設計與除三注入鎖定除頻器頻率調動之研究
Design of Capacitive Cross-coupled Injection-Locked Frequency Divider with 3D Inductor and Frequency Tuning in ÷3 Cross-Coupled Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
徐敬文
Ching-Wen Hsue
口試委員: 黃進芳
Jhin-Fang Huang
賴文政
Wen-Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 138
中文關鍵詞: 壓控振盪器注入鎖定除頻器
外文關鍵詞: VCO, ILFD
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出了三顆不同結構的注入鎖定除頻器,分別為三共振除四注入鎖定除頻器、應用3D電感之除二注入鎖定除頻器以及寬除頻範圍除三注入鎖定除頻器。
首先,第一部分使用台積電矽鍺0.18微米製程,來呈現三共振除四注入鎖定除頻器。此除頻器的設計方式是用交叉耦合(cross couple)結合單注入MOSFET與RLC共振腔。於兩可變電容連接處加上電阻,增加其鎖頻範圍。當工作電壓操作在1伏特,注入訊號強度為0dBm時,可得注入鎖定頻帶為9.9~13 GHz,除頻比例為27.07%。此晶片的核心功率消耗為7.2 mW,晶片面積為0.83×1.06 mm2。
其次,我們使用台積電0.18微米製程,來呈現低功耗高鎖頻範圍,應用3D電感之除二注入鎖定除頻器。此除頻器設計則是基於一電容耦合的壓控振盪器,加上一個MOSFET做為訊號注入,並使用3D電感來節省晶片面積。當工作電壓操作在0.8伏特,注入訊號強度為0dBm時,可得注入鎖定頻帶為1.5~9.5 GHz,除頻比例為145.4%。此晶片的核心功率消耗為10.6 mW,晶片面積為0.87×0.705 mm2。
最後,我們探討一個使用台積電0.18微米製程之寬除頻範圍之除三注入鎖定除頻器的頻率變化。此除頻器使用兩個MOSFETs做注入,加上一組雙頻RLC共振腔。當工作電壓操作在1伏特,注入訊號強度為0dBm時,可得注入鎖定頻帶為6.9~11.9 GHz,除頻比例為53.19%。此晶片的核心功率消耗為5.6 mW,調動Vtune量測頻率變化有發現遲滯現象,但不影響鎖頻範圍,晶片面積為0.915×0.962 mm2。


In this thesis, we propose three different kinds of injection-locked frequency dividers (ILFD): triple bands divide-by-4 ILFD, ultra-wide-locking-range divide-by-2 ILFD with 3D inductor and dual bands divide-by-3 ILFD, respectively.
First, a wide locking range divide-by-4 ILFD is implemented in the TSMC SiGe 0.18 μm BiCMOS process. The ILFD is based on a cross-coupled oscillator with a direct injection MOSFET and a RLC resonator. Resistors are used to enhance the locking range. At the drain-source bias of 1V, and at the incident power of 0 dBm the locking range of the divide-by-4 ILFD is 3.1 GHz, from the incident frequency 9.9 to 13.0 GHz, the locking range percentage is 27.07%. The power consumption of ILFD core is 7.2mW. The die area is 0.83 × 1.06 mm2.
Secondly, we present a lower power and wide locking range divide-by-2 with capacitive cross-coupled injection-locked frequency divider (ILFD) implemented in the TSMC standard 0.18 μm CMOS process. The ILFD is based on a capacitive cross-coupled VCO with one injection MOSFET for coupling the external signal to the resonator. The ILFD uses two 3-dimensional inductors to reduce the die area. At the supply voltage of 0.8V, the divider’s free-running frequency is 1.89 GHz, and at the incident power of 0 dBm the locking range is about 8 GHz (145.4%) from 1.5 to 9.5GHz. The core power consumption is 10.6mW. The die area is 0.87×0.705 mm2.
Finally, we study the RF performance of a wide locking range divide-by-3 injection-locked frequency divider (ILFD) in CMOS process. The ILFD circuit bases on capacitive cross-coupled oscillator and uses dual-resonance RLC resonator. The power consumption of the ILFD core is 5.5mW and the locking range is from 6.9 to 11.9 GHz (53.2%) at injection power Pinj=0dBm. Measured tuning range depends upon the direction of voltage tuning, the tuning range shows a hysteresis loop, which does not affect on the locking range of ILFD. The die area is 0.915×0.962 mm2.

中文摘要 I Abstract III 誌謝 V Table of Contents VI List of Figure IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 Overview of Voltage-Controlled Oscillators 6 2.1 Introduction 6 2.2 Design Concepts of Voltage-Controlled Oscillator 6 2.2.1 Parameters of a Voltage-Controlled Oscillator 7 2.2.2 Phase Noise 9 2.2.3 Quality Factor 14 2.3 Basic Theory of Oscillators 16 2.3.1 Two-Port (Feedback) View 16 2.3.2 One-Port (Negative Resistance) View 18 2.4 Classification of Oscillators 20 2.4.1 Ring Oscillator 20 2.4.2 LC-Tank Oscillator 25 2.5 Type of the LC Oscillator 29 2.5.1 Single Transistor Oscillator 30 2.5.2 One-Port Oscillator (Negative-Gm Oscillator) 33 2.5.3 Cross-Coupled Oscillator 37 2.5.4 Complementary Cross-Coupled Topology 39 2.6 Research in RLC-Tank 42 2.6.1 Resistors 43 2.6.2 Inductor 44 2.6.3 Transformer 50 2.6.4 Capacitors 55 2.6.5 Varactors 57 Chapter 3 Overview of Injection Locking Frequency Divider 63 3.1 Introduction 63 3.2 Principle of Injection Locked Frequency Divider 64 3.3 Locking Range 66 Chapter 4 Triple-Resonance Divide-by-4 Injection-Locked Frequency Divider 69 4.1 Introduction 69 4.2 Circuit Design 70 4.3 Measurement Results 72 Chapter 5 Capacitive Cross-Coupled Injection-Locked Frequency Divider with 3D Inductor 84 5.1 Introduction 84 5.2 Circuit Design 86 5.3 Measurement Results 88 Chapter 6 Frequency Tuning in ÷3 Cross-Coupled Injection-Locked Frequency Divider 97 6.1 Introduction 97 6.2 Circuit Design 98 6.3 Measurement Results I 101 6.4 Measurement Results II 105 Chapter 7 Conclusions 113 References 114

[1] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
[2] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[3] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
[4] B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
[5] B. Razavi, “Design of Integrated Circuits for Optical Communications”, Mc Graw Hill.
[6] S. J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme”, IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
[7] B. Razavi, “Design of Analog CMOS Integrated Circuit”, McGraw Hill, 2008.
[8] G. Gonzalez , “Microwave Transistor Amplifiers Analysis And Design,” Prentice Hall, 1997.
[9] 劉隽宇, 翁若敏, “運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器,” 2005.07.
[10] De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[11] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency Dependence on Bias Current in 5GHz CMOS VCOs:impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp.1001-1003, 2002
[12] T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits”, Cambridge University Press, 1998
[13] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[14] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[15] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[16] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
[17] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[18] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[19] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[20] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[21] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[22] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[23] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[24] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[25] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[26] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[27] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[28] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[29] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[30] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[31] W. Chen, and C. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25μm CMOS Technology” European Solid-State Circuits Conf. pp. 89- 92, Sept. 2002.
[32] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[33] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlockeddivider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
[34] S.-L. Jang,C. C. Liuand C.-W. Chung,” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol.19,no. 4,pp. 236-238, April 2009.
[35] B. Razavi, "A study of injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, 39(9):1415-1424, Sept. 2004.
[36] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, ” A triple-resonance RLC-tank divide-by-2 injection-locked frequency divider,” Electronics Letters, 17 February 2016.
[37] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, " Wide-locking range Divide-by-3 injection-locked frequency divider using 6th-Order RLC resonator," IEEE Transactions on Very Large Scale Integration Systems 2016.
[38] S.-L. Jang, S. Jain, J.-F. Huang, and C.-W. Hsue, ” DC-bias and oscillation-amplitude dependent frequency-tuning characteristics of varactor-switching dual-band CMOS VCOs,” Microw. Opt. Technol. Lett., 55, 6,pp.1389-1393, June 2013.
[39] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang," A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98,no. 4, pp. 521-527, April 2011.
[40] M.-C. Chuang, J.-J.Kuo, C.-H.Wang, and H. Wang, ”A 50 GHz divide-by-4 injection lock frequency divider using matching method’, IEEE Microw.Wireless Compon. Lett., vol. 18, pp. 344–346, May 2008.
[41] S.-L. Jang, and C.-C. Fu. ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integr Circ Sig Process, vol. 78, issue 2, pp. 523–528, Feb. 2014.
[42] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[43] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency dividerwith 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004.
[44] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequencydivider with shunt-peaking locking-range enhancement,” in IEEE Int.Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
[45] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[46] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
[47] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, ” Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. on Electronics., Vol.E91-C, No.6, pp.956-962, Jun. 2008.
[48] S.-L. Jang, M.-Hs. Suchen, and C.-F. Lee, ” Colpitts injection locked frequency divider implemented with a 3D helical transformer ,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp.410-412, June, 2008.
[49] S.-L. Jang, C.-C. Liu and C.-W. Tai,” Implementation of 6-port 3D transformer in injection-locked frequency divider,” IEEE Int. VLSI- DAT, 2009.
[50] S.-L. Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p. 1888 – 1889.
[51] S.-L. Jang, X.-Y. Hang, and W.–T. Liu, ” Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process. Vol. 88, no.1, pp 97-104, 2016.
[52] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[53] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[54] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 259–262.
[55] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
[56] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
[57] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[58] S.-L. Jang, F.-B. Lin, and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015.
[59] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,”IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
[60] S.-L.Jang, T.-C. Kung and C.-W. Hsue," Wide-locking range divide-by-3 injection-locked frequency divider through enhanced 2nd harmonic," IEEE Microw. Wireless Compon. Lett., vol. 26, No. 7, pp.537-539, July, 2016.
[61] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, " Wide-Locking Range Divide-by-3 Injection-Locked Frequency Divider Using 6th-Order RLC Resonator," IEEE Transactions on Very Large Scale Integration Systems, Vol. 24, No. 7, pp. 2598 – 2602, July 2016.
[62] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers,Feb. 2006, pp.27–29.
[63] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang,“Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol.E91-C, no.6,pp. 956–962,Jun. 2008.
[64] S.-L. Jang,C.-Y. Lin, and C.-F. Lee,“A low voltage 0.35μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470–472, July 2008.
[65] S.-L. Jang, C.-C. Liu, and J.-F. Huang,”Divide-by-3 injection-locked frequency divider using two linear mixers,”IEICE Trans. on Electron., Vol.E93-C,No.1,pp.136-139,Jan. 2010.
[66] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,”IEEE Microw. Wireless Compon. Lett.,vol. 20, pp.390-392, July, 2010.
[67] Wu J.-W, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu,”Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov.,2013.
[68] Y.-T. Chen, M.-W. Li,H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
[69] K.-H. Chien, J. Y. Chen and H. K. Chiou, “Designs of K-band divide-by-2 and divide-by-3 injection-locked frequency divider with darlington topology,” IEEE Trans. Microw. Theory Tech., vol. 99, 2015.
[70] S.-L.Jang, C.-Y. Lin and M.-H. Juang, ” Enhanced locking range technique for a divide-by-3 differential injection-locked frequency divider,”Electronics Letters . vol.51, 6, 19 March 2015, p. 456 – 458.
[71] S.-L.Jang, X.-Y. Hang, and W.–T. Liu, ” Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, 88:97–104, 2016.
[72] S.-L.Jang, and C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,”Electronics Letters .,vol. 50, 23, pp.1710-1712, 2014.
[73] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p. 1888 – 1889.
[74] S.-L.Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr CircSig Process.,vol. 76, Issue 1, pp. 111-116,2013.
[75] S.-L.Jang, and J.-H. Hsieh, ” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598, 2013.

無法下載圖示 全文公開日期 2021/08/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE