簡易檢索 / 詳目顯示

研究生: 黃瀚民
Han-Min Huang
論文名稱: 高頻LLC諧振轉換器設計與研製
Design and Implementation of High Frequency LLC Resonant Converter
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉宇晨
Yu-Cheng Liu
張佑丞
Yu-Cheng Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 氮化鎵變壓器雜散電容零電壓切換條件四分之一圈變壓器
外文關鍵詞: Gallium Nitride, Transformer Capacitor, Zero-Voltage Switching, Quarter-Turn Transformer
相關次數: 點閱:404下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出應用於資料中心的48 V轉 12 V,操作頻率為 1.6 MHz的隔離型直流 -直流諧振轉換器。本論文採用夠在全負載範圍達到一次側功率開關零電壓切換、二次側功率開關零電流切換的全橋 LLC串聯諧振式轉換器。功率開關使用氮化鎵元件取代傳統矽元件,以降低功率開關的截止切換損耗,並將切換頻率設計在轉換器諧振頻率上,使直流轉換器的應用獲得最佳的轉換效率。本論文考量了變壓器內部的雜散電容設計功率開關之零電壓切換條件,確保在高頻的環境下功率開關皆有達成 零電壓切換。在變壓器設計的部分,使用新的設計流程改善一次側功率開關的損耗,在功率密度以及轉換效率上取得最佳點。採用四分之一圈變壓器結構,在維持相同圈比的情況下,減少一次側與二次側的直流銅損,並在低壓大電流的規格下,分析了繞組排列以減少交流阻抗,並使用磁性元件模擬軟體 ANSYS Maxwell分析漏磁通對銅損的影響。且分析繞組間距對於雜散電容的影響,減少變壓器內的雜散電容,進一步優化轉換器效率。最終完成輸出功率1600 W、切換頻率 1.6 MHz、最高效率 97.51 %、功率密度為 64 W/cm3的四分之一圈 全橋 LLC串聯諧振式轉換器。


    This thesis proposes a 48 V to 12 V isolated DC-DC resonant converter operating at 1.6 MHz for data center applications. This paper adopts a full-bridge LLC series resonant converter, which can achieve zero-volt-age switching of the primary side power switch and zero-current switching of the secondary side power switch in the entire load range. The power switch used gallium nitride devices to reduce the turn-off switching loss of the power devices. The switching frequency is designed at the resonant frequency of the resonant converter for the high conversion efficiency. This thesis considers the stray capacitance inside the transformer to design the zero-voltage switching condition of the power switch to ensure that the power switch can achieve zero-voltage switching in a high-frequency environment. In the transformer design, a new design process is used to improve the loss of the primary side power switch and achieve the best point in power density and conversion efficiency. A quarter-turn transformer structure is adopted to reduce the DC copper losses on the primary and secondary sides while maintaining the same turn ratio. Magnetic component simulation software ANSYS Maxwell analyzes the influence of leakage flux on copper loss. And analyze the effect of winding spacing on stray capacitance, reduce the stray capacitance in the transformer, and further optimize the converter efficiency. Finally, a quarter-turn full-bridge LLC series resonant converter with an output power of 1600 W, a switching frequency of 1.6 MHz, maximum efficiency of 97.51 %, and a power density of 64 W/cm3 is completed.

    摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文內文大綱 第二章 分數圈變壓器雜散電容分析 2.1 四分之一圈變壓器動作原理 2.2 變壓器雜散電容分析 2.2.1 四分之一圈變壓器繞組結構介紹 2.2.2 四分 之一圈變壓器雜散電容分析 第三章 分數圈變壓器設計 3.1 諧振轉換器零電壓切換條件分析 3.2 變壓器設計與分析 3.2.1 鐵芯參數化分析 3.2.2 鐵芯損耗分析 3.2.3 繞組排列分析 3.2.4 銅線損耗分析 3.2.5 元件損耗分析 3.3 系統損耗最佳化 3.3.1 系統總損耗 3.3.2 繞組間距優化 3.3.3 比較設計方式之差異 第四章 實測驗證 4.1 實體電路 4.2 實測波形 4.3 實測數據 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] Efficiency in Data Centers. [Online]. Available
    https://www.comsoc.org/publications/tcn/2019-nov/energy-effi-ciency-data-centers
    [2] E. R. Masanet et al., Global Data Center Energy Use: Distribution, Compo-sition, and Near-Term Outlook, Evanston, IL, 2018.
    [3] IEA (2020), “Data Centers and Data Transmission Networks”, IEA, Paris, 2020. [Online]. Available:
    https://www.iea.org/reports/datacentres-and-data-transmission-net-works
    [4] IEEE.tv, “KeyTalk with Xin Li and Shuai Jiang: Google 48V Power Architecture- APEC [Online]. Available
    https://ieeetv.ieee.org/ieeetv-specials/keytalk-xin-li-and-shuai-jiang-google-48v-power-architecture-apec-2017?rf=events|114&
    [5] R. Rong and R. Wang, “High efficiency 1.5kW 48V-12V DCDC Converter with Leadless MOSFET for Mild Hybrid Electric Vehicle,” PCIM Asia 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, China, 2018, pp. 1-6.
    [6] L. Zhang and S. Chakraborty, “An Interleaved Series-Capacitor Tapped Buck Converter for High Step-Down DC/DC Application,” in IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6565- 6574, July 2019,doi: 10.1109/TPEL.2018.2877309.
    [7] Y. Zhang and M. de Rooij, “300 W 48V-12V Digitally Controlled 1/16 Brick DC-DC Converter Using GaN FETs,” PCIM Europe dig-ital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Man-agement, Germany, 2020, pp. 1-4.
    [8] Y. Ren, M. Xu, K. Yao and F. C. Lee, “Two-stage 48 V Power Pod Exploration for 64-bit Microprocessor,” Eighteenth Annual IEEE A plied Power Electronics Conference and Exposition, 2003. APEC '03., Miami Beach, FL, USA, 2003, pp. 426-431 vol.1, doi: 10.1109/APEC.2003.1179248.
    [9] M. Ahmed, C. Fei, F. C. Lee and Q. Li, “High Efficiency Two-Stage 48V VRM with PCB Winding Matrix Transformer,” 2016 IEEE En-ergy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-8, doi: 10.1109/ECCE.2016.7855150.
    [10] T. Liu, X. Wu and S. Yang, “1 MHz 48V-12V Regulated DCX with Single Transformer,” in IEEE Journal of Emerging and Selected Top-ics in Power Electronics, doi: 10.1109/JESTPE.2019.2955607.
    [11] M. H. Ahmed, A. Nabih, F. C. Lee and Q. Li, “High-efficiency, High-density Isolated/Regulated 48V Bus Converter with a Novel Planar Magnetic Structure,” 2019 IEEE Applied Power Electronics Confer-ence and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 468-475, doi: 10.1109/APEC.2019.8722216.
    [12] M. H. Ahmed, F. C. Lee and Q. Li, “Two-Stage 48V VRM With In-termediate Bus Voltage Optimization For Data Centers,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2020.2976107.
    [13] S. Webb and Y. Liu, “12 Switch Zero-Inductor Voltage Converter Topology,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 2189-2196, doi: 10.1109/APEC.2019.8722328.
    [14] Z. Ye, Y. Lei and R. C. N. Pilawa-Podgurski, “A Resonant Switched Capacitor Based 4-to-1 Bus Converter Achieving 2180 W/in3 Power Density and 98.9% Peak Efficiency,” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 121-126, doi: 10.1109/APEC.2018.8340997.
    [15] Z. Ye, Y. Lei and R. C. N. Pilawa-Podgurski, “A 48-to-12 V Cascaded Resonant Switched-Capacitor Converter for Data Centers with 99% Peak Efficiency and 2500 W/in3 Power Density,” 2019 IEEE Ap-plied Power Electronics Conference and Exposition(APEC), Ana-heim, CA, USA, 2019, pp. 13-18, doi: 10.1109/APEC.2019.8721812.
    [16] G. Sovik, T. Urkin, E. E. Masandilov and M. Mordechai Peretz, “Op-timal Self-Tuning Control for Data-Centers’ 48V-12V ZCS-STC,” 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 455-462, doi: 10.1109/APEC39645.2020.9124129.
    [17] S. Jiang, C. Nan, X. Li, C. Chung, and M. Yazdani, “Switched Tank Converters,” in Proc. IEEE Appl. Power Electron. Conf. Expo., San Antonio, TX, USA, 2018, pp. 81–9
    [18] C. Fei, M. H. Ahmed, F. C. Lee and Q. Li, "Two-Stage 48 V-12 V/6 V-1.8 V Voltage Regulator Module With Dynamic Bus Voltage Con-trol for Light-Load Efficiency Improvement," in IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5628-5636, July 2017, doi: 10.1109/TPEL.2016.2605579.
    [19] B. Yang, F. C. Lee, A. J. Zhang and G. S. Huang, “LLC Resonant Converter for Front end DC/DC Conversion,” APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335), Dallas, TX, USA, 2002, pp. 1108-1112 vol.2.
    [20] B. Yang, “Topology Investigation of Front End DC/DC Power Con-version for Distributed Power System,” PhD Dissertation, 2003.
    [21] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, “A Survey of Wide Bandgap Power Semiconductor Devices,” in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, May 2014, doi: 10.1109/TPEL.2013.2268900.
    [22] U. K. Mishra, P. Parikh and Yi-Feng Wu, “AlGaN/GaN HEMTs-an overview of Device Operation and Applications,” in Proceedings of the IEEE, vol. 90, no. 6, pp. 1022-1031, June 2002, doi: 10.1109/JPROC.2002.1021567.
    [23] D. Lin, P. Zhou, W. N.Fu, Z. Badics and Z. J. Cendes, “A Dynamic Core Loss Model for Soft Ferromagnetic and Power Ferrite Materi-als in Transient Finite Element Analysis,” in IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 1318-1321, March 2004, doi: 10.1109/TMAG.2004.825025.
    [24] H. Cui and K. D. T. Ngo, “Transient Core-Loss Simulation for Fer-rites With Nonuniform Field in SPICE,” in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 659-667, Jan. 2019, doi: 10.1109/TPEL.2018.2812856.
    [25] Y. C. Liu, C Chen, K. D. Chen, Y. L. Syu, M. C. Tsai, “High-Fre-quency LLC Resonant Converter with GaN Devices and Integrated Magnetics,” Energies 2019, 12, 1781.
    [26] C. Fei, W. Feng, F. C. Lee and Q. Li, “High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Trans-former for High-Output Current Applications,” in IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 9072-9082, Nov. 2017, doi: 10.1109/TIE.2017.2674599.
    [27] D. Huang, S. Ji and F. C. Lee, "LLC Resonant Converter With Matrix Transformer," in IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4339-4347, Aug. 2014, doi: 10.1109/TPEL.2013.2292676.
    [28] S. Wang, H. Wu, F. C. Lee and Q. Li, "Integrated Matrix Transformer with Optimized PCB Winding for High-Efficiency High-Power-Density LLC Resonant Converter," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 6621-6627, doi: 10.1109/ECCE.2019.8911885.
    [29] E. Rong, S. Li, R. Zhang, X. Du, Q. Min and S. Lu, "A Magnetic Integration Half-turn Planar Transformer for LLC Resonant DC-DC Converters," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 484-488, doi: 10.1109/APEC.2018.8341055.
    [30] M. K. Ranjram and D. J. Perreault, "Leveraging Multi-Phase and Fractional-Turn Integrated Planar Transformers for Miniaturization in Data Center Applications," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), 2020, pp. 1-8, doi: 10.1109/COMPEL49091.2020.9265752.
    [31] Y. C. Liu et al., "Design and Implementation of a Planar Transformer With Fractional Turns for High Power Density LLC Resonant Con-verters," in IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5191-5203, May 2021, doi: 10.1109/TPEL.2020.3029001.
    [32] Y. -C. Liu et al., "Design and development of a fractional-turn trans-former for high power density LLC resonant converters," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 335-342, doi: 10.1109/APEC42165.2021.9487397.
    [33] M. H. Ahmed, F. C. Lee, Q. Li and M. d. Rooij, "Design Optimiza-tion of Unregulated LLC Converter with Integrated Magnetics for Two-Stage 48V VRM," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 521-528, doi: 10.1109/ECCE.2019.8912785.
    [34] W. Zhang, F. Wang, D. J. Costinett, L. M. Tolbert and B. J. Blalock, "Investigation of Gallium Nitride Devices in High-Frequency LLC Resonant Converters," in IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 571-583, Jan. 2017, doi: 10.1109/TPEL.2016.2528291.
    [35] B. Cogitore, J. P. Keradec, and J. Barbaroux, “The two-winding transformer: an experimental method to obtain a wide frequency range equivalent circuit,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 2, pp. 364–371, apr 1994.
    [36] L. Dalessandro, F. da Silveira Cavalcante, and J. W. Kolar, “Selfca-pacitance of high-voltage transformers,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 2081–2092, sep 2007.
    [37] Z. Ouyang, O. C. Thomsen, and M. A. E. Andersen, “Optimal design and tradeoff analysis of planar transformer in high-power DC–DC converters,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2800–2810, jul 2012.
    [38] Hai Yan Lu, Jian Guo Zhu, and S. Y. R. Hui, “Experimental determi-nation of stray capacitances in high frequency transformers,” IEEE Transactions on Power Electronics, vol. 18, no. 5, pp. 1105–1112, sep 2003.
    [39] C. Østergaard, C. Kjeldsen and M. Nymand, "A New Transformer Model with Separate Common-Mode and Differential-Mode Capac-itance," IECON 2020 The 46th Annual Conference of the IEEE In-dustrial Electronics Society, 2020, pp. 1198-1204, doi: 10.1109/IE-CON43393.2020.9255142.
    [40] C. Østergaard, C. S. Kjeldsen and M. Nymand, "Calculation of Pla-nar Transformer Capacitance Based on the Applied Terminal Voltages," 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), 2020, pp. 1-7, doi: 10.1109/COM-PEL49091.2020.9265797.
    [41] A. Baccigalupi, P. Daponte, and D. Grimaldi, “On a circuit theory approach to evaluate the stray capacitances of two coupled induc-tors,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 5, pp. 774–776, 1994.
    [42] Tan, Linlin & Yang, xu & Yuwen, Dian. (2016). Optimization design of planar transformer in DC-DC converter. 10.2991/aest-16.2016.125.
    [43] J. Schäfer, D. Bortis and J. W. Kolar, "Novel Highly Efficient/Com-pact Automotive PCB Winding Inductors Based on the Compensat-ing Air-Gap Fringing Field Concept," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9617-9631, Sept. 2020, doi: 10.1109/TPEL.2020.2969295.
    [44] Efficient Power Conversion, “EPC2053”, Data Sheet, 2020.
    [45] Efficient Power Conversion, “EPC2218”, Data Sheet, 2020.
    [46] Efficient Power Conversion, “EPC2065”, Data Sheet, 2020.
    [47] Efficient Power Conversion, “EPC2020”, Data Sheet, 2020.

    QR CODE