簡易檢索 / 詳目顯示

研究生: 趙余亘
Yu-Hsuan Chao
論文名稱: 氮摻雜碳及硒化鈷氧還原電化學觸媒
Nitrogen-doped carbon and cobalt selenide electrocatalysts for oxygen reduction reaction
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 陳燿騰
Yaw-Terng Chern
江志強
Jyh-Chiang Jiang
林秀麗
Hsiu-Li Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 132
中文關鍵詞: 氮摻雜碳硒化鈷氧氣還原反應
外文關鍵詞: N-doped carbon, CoSe2, Oxygen Reduction Reaction
相關次數: 點閱:375下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

PEMFC轉化效率高、啟動時間短且乾淨無污染。具有極大潛力作為未來替代能源。但其商業化的阻礙為低耐用度與高成本。而目前研究指出,氮摻雜碳觸媒(N-doped Carbon)與硒化鈷觸媒(CoSe2)雖其活性與穩定性均與白金仍有著差距,但低廉的價格仍讓其有潛力取代白金觸媒的替代品。而本研究將會詳細探討此兩種觸媒其合成方式與分析測試。
以乙二胺-甲醛系統,並摻入鐵鈷金屬輔助,在硝酸預處理過的碳黑上進行縮合反應,並進行高溫熱處理後以溼球磨法打散團聚而得到最後的氮摻雜碳觸媒。由旋轉環盤電極進行電化學測試:線性掃描伏安法測試(LSV)測量其氧氣還原活性,啟動電位為0.831 V (vs. NHE)、半波電位為0.667 V (vs. NHE)。而進行1000圈循環伏安法測試穩定度後,比較半波電位的衰退為0.031V。而過氧化氫的產率最高為3.7%。由元素分析儀精確定出氮含量為5.09 wt%;XPS分析顯示系統中為四種主要氮-碳鍵結:40.28% 之pyridinic-N、 24.80% 之pyrrolic-N,與剩下比例之quarternary-N與pyridinic oxide;拉曼光譜由ID/IG為1.05,預測石墨碳邊角面上的扭曲結構,最後由TEM觀察觸媒的表面型態。
採用羰基鈷與過量的硒作搭配並承載於氮摻雜碳上,進行熱處理得到氮摻雜碳負載硒化鈷觸媒。最佳觸媒之啟動電位為0.792 V (vs. NHE)、半波電位為0.711 V (vs. NHE)。而進行1000圈循環伏安法測試穩定度後,可發現硒化鈷的穩定性不佳,在高電位酸性溶液下可能溶解剝落,比較半波電位的衰退為0.067 V。而過氧化氫的最高產率也將提高為6.4%;而由XRD可鑑定CoSe2為尺寸 21 nm的斜方相與28-29 nm的立方相共存。


Proton exchange membrane fuel cell (PEMFC), a high energy efficient and environmentally friendly system, is considered to be a future power supplier. The major barriers for PEMFC commercialization are high cost and insufficient cycle life, which mainly arise from the platinum-based catalysts of limited supply. N-doped carbon and non-noble metal chalcogenides are potentially substitutes for platinum catalysts, although their activities are less than platinum.
In this investigation, we attempt to promote the activity of cobalt selenide with N-doped carbon. We coated cobalt and iron doped ethylenediamine–formaldehyde chelate complexes on Vulcan support. The N-doped carbon catalyst was subsequently synthesized by heat treatment and wet ball-mill to break down aggregations.The optimal catalyst of N-doped carbon demonstrates an onset potential 0.831 V (vs. NHE), half-wave potential (E1/2) 0.667 V (vs. NHE) when reducing saturated oxygen in 0.5 M H2SO4, measured with the rotating disk voltammetry. It has excellent stability, showing only 0.031V E1/2 decay after 1000 cycles. It also generated less than 3.7% H2O2, accompanying oxygen reduction. This N-doped carbon catalyst contains 5.09 wt% nitrogen, measured with elemental analysis. XPS analysis reveals four types of nitrogen sites. Among them, the pyridinic-N site occupies 40.28%, the pyrrolic-N site takes up 24.80%, and the quarternary-N and pyridinic oxide make up the rest. Raman results indicate a moderate distortion of the graphitized edge, with ID/IG 1.05. TEM shows the morphology of the catalyst.
The catalyst activity is improved when cobalt selenium (CoSe2) is integrated with N-doped carbon properly, even though the activity improvement and the stability of this compound catalyst are much less than the catalyst of RuSe2 and N-doped carbon that our group synthesized previously. One salient feature of CoSe2 and N-doped carbon is its relatively low material cost.The best compound catalyst exhibits an onset potential 0.792 V (vs. NHE), half-wave potential (E1/2) 0.711 V (vs. NHE) on oxygen reduction. However, CoSe2 seems unable to withstand the 1000 CV cycles of stability test, the compound catalyst shows a 0.067 V E1/2 decay after 1000 cycles. It also shows a higher H2O2 yield 6.4%. Two crystalline phases are found in CoSe2 catalyst, including the 21 nm particles of orthorhombic phase and the 28-29 nm particles of cubic phase.

目錄 摘要 I Abstract III 目錄 V 圖目錄 XI 表目錄 XVII 第一章 緒論 1 第二章 理論基礎與文獻回顧 2 2.1 PEMFC簡介 2 2.1.1陰極電化學反應與電極 3 2.1.2氧還原反應(Oxygen-Reduction Reaction , ORR) 4 A. 四電子路徑 (direct four-electron pathway) 4 B. 過氧化物路徑 (two-electron pathway) 4 2.2 碳支撐的介紹 5 2.2.1 碳支撐前處理 5 2.3 氮摻雜碳 (N-doped Carbon) 6 2.3.1 巨環結構前驅物 6 2.3.2 含氮前驅物 8 A. 含氮化合物之前驅物 8 B. 二胺類之前驅物 10 C. 高分子縮合反應 11 2.4 金屬的硫屬化合物 (Metal Chalcogenides) 12 2.4.1 貴重金屬的硫屬化合物 12 2.4.1 非貴重金屬的硫屬化合物 14 2.5 研究動機 16 第三章 實驗方法與分析儀器 17 3.1 實驗藥品及設備 17 A. 化學藥品: 17 Part I:N-doped carbon 17 Part II:CoSe2 18 Part III:Analysis 18 3.2 實驗分析儀器設備 19 A. 實驗操作 19 B. 測試分析 20 3.3實驗方法 21 3.3.1碳黑之前處理 21 3.3.2氮摻雜碳的製備 22 A. 氮摻雜碳之不同氮源前驅物選擇比較 22 B. 氮摻雜碳之乙二胺縮合系統選擇比較 23 C. 氮摻雜碳鐵鈷金屬觸媒摻入與否比較 25 D. 氮摻雜碳熱處理溫度比較 27 3.3.3 硒化鈷觸媒製備 28 A. 不同碳支撐材負載硒化鈷觸媒的比較 28 B. 氮摻雜碳負載不同硒含量合成硒化鈷觸媒的比較 30 C. 不同熱處理溫度合成氮摻雜碳負載硒化鈷觸媒的比較 31 3.4 材料鑑定與分析 34 3.4.1 電化學特性測試 34 A. 工作電極製備 35 B. 循環伏安法測試 (CV) 36 C. 氧還原活性測試-線性掃描伏安法測試 (LSV) 36 D. 過氧化氫產率測試 (H2O2 yield) (Selectivity) 36 E. 觸媒穩定度測試 (Stability) 37 3.4.2元素分析 (Element Analyzer) 37 3.4.3拉曼光譜 (Raman spectrum) 38 3.4.4 X-ray光電子能譜儀 (X-ray photoelectron spectroscopy) 39 3.4.5 X光能量散佈儀元素分析 (EDX) 43 3.4.6 X光繞射晶相分析 (XRD) 44 3.4.7 場發射穿透式電子顯微鏡分析 (FEG-TEM) 44 第四章 實驗結果與討論 46 4.1 氧還原反應之線性掃描伏安分析 (Linear Sweep Voltammetry) 46 4.1.1 氮摻雜碳啟動電位與半波電位總整理 48 A. 氮摻雜碳之不同氮源前驅物選擇比較 51 B. 氮摻雜碳之乙二胺合成系統選擇比較 52 C. 氮摻雜碳之鐵鈷金屬觸煤摻入與否比較 53 D. 氮摻雜碳之熱處理溫度比較 53 4.1.2 碳黑/氮摻雜碳負載硒化鈷觸媒啟動電位與半波電位總整理 54 A. 不同碳支撐材負載硒化鈷觸媒的比較 59 B. 氮摻雜碳負載不同硒含量合成硒化鈷觸媒的比較 60 C. 氮摻雜碳負載硒化鈷觸媒之不同熱處理溫度的比較 61 4.2 選擇性測試 (Selectivity test) 63 4.2.1 氮摻雜碳的選擇性測試 64 4.2.2 碳支撐材負載硒化鈷觸媒的過氧化氫產率 64 A. 碳黑負載硒化鈷觸媒之過氧化氫的產率 64 B. 氮摻雜碳負載硒化鈷觸媒之過氧化氫的產率 65 4.3 穩定度測試 (Stability test) 66 4.3.1 氮摻雜碳的穩定度測試 66 4.3.2 碳支撐材負載硒化鈷觸媒的穩定度測試 67 A. 碳黑負載硒化鈷觸媒之穩定度測試 67 B. 氮摻雜碳負載硒化鈷觸媒之穩定度測試 68 4.4 元素組成分析 69 4.4.1 氮摻雜碳之元素分析 69 A. 不同合成方式之氮摻雜碳 69 B. 不同熱處理溫度合成氮摻雜碳之元素分析 70 4.5 拉曼光譜分析 (Raman spectroscopy) 71 4.5.1氮摻雜碳支撐之拉曼光譜分析 73 A. 不同合成方式之氮摻雜碳拉曼光譜比較 73 B. 不同熱處理溫度氮摻雜碳拉曼光譜比較 77 4.6 X-ray光電子能譜分析(X-ray photoelectron spectroscopy) 82 4.6.1氮摻雜碳之XPS分析 82 A. 不同合成方式之氮摻雜碳XPS比較 85 B. 不同熱處理溫度合成氮摻雜碳XPS比較 87 4.7 場發射掃描式電子顯微鏡附屬X-Ray能量散佈儀(FE-SEM / Energy Dispersive X-ray analyzer, EDX) 92 4.7.1 氮摻雜碳支撐材負載硒化鈷觸媒 92 A. 不同碳支撐材負載硒化鈷觸媒的EDS比較 92 B. 氮摻雜碳負載不同硒含量合成硒化鈷觸媒的比較 93 C. 不同熱處理溫度合成氮摻雜碳負載硒化鈷觸媒的比較 94 4.8 X光繞射晶相分析(XRD) 96 4.8.1 氮摻雜碳的XRD分析 97 4.8.2 氮摻雜碳支撐材負載硒化鈷觸媒的XRD分析 97 A. 氮摻雜碳負載不同硒含量合成硒化鈷觸媒的比較 100 B. 不同熱處理溫度合成氮摻雜碳負載硒化鈷觸媒的比較 105 4.9場發射穿透式電子顯微鏡分析(FEG-TEM) 111 4.9.1氮摻雜碳TEM分析 111 4.9.2氮摻雜碳負載硒化鈷觸媒TEM分析 118 第五章 結論 120 參考資料 123

1. "Proton Exchange Membrane Fuel Cells PEMFC", Energy and Materials Science Group, Department of Chemistry, Technical University of Denmark.
2. Shao, Y., et al., Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. Journal of Power Sources, 2007. 167(2): p. 235-242.
3. Feng, Y. and N. Alonso-Vante, Nonprecious metal catalysts for the molecular oxygen-reduction reaction. physica status solidi (b), 2008. 245(9): p. 1792-1806.
4. Gasteiger, H.A., et al., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005. 56(1-2): p. 9-35.
5. Wu, J., et al., A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008. 184(1): p. 104-119.
6. Yeager, E., Electrocatalysts for O2 reduction. Electrochimica Acta, 1984. 29(11): p. 1527-1537.
7. Subramanian, N.P., et al., Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes. Journal of Power Sources, 2006. 157(1): p. 56-63.
8. Poh, C., et al., Citric acid functionalized carbon materials for fuel cell applications. Journal of Power Sources, 2008. 176(1): p. 70-75.
9. Jasinski, R., A new fuel cell cathode catalyst [13]. Nature, 1964. 201(4925): p. 1212-1213.
10. Jasinski, R., Cobalt Phthalocyanine as a Fuel Cell Cathode. Journal of The Electrochemical Society, 1965. 112(5): p. 526-528.
11. Scherson, D.A., et al., Cobalt tetramethoxyphenyl porphyrin-emission Mossbauer spectroscopy and O2 reduction electrochemical studies. Electrochimica Acta, 1983. 28(9): p. 1205-1209.
12. Faubert, G., et al., Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochimica Acta, 1996. 41(10): p. 1689-1701.
13. Gojkovic, S.L., S. Gupta, and R.F. Savinell, Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction. Journal of Electroanalytical Chemistry, 1999. 462(1): p. 63-72.
14. Lefevre, M., J.P. Dodelet, and P. Bertrand, Oi reduction in PEM fuel cells: Activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors. Journal of Physical Chemistry B, 2000. 104(47): p. 11238-11247.
15. Lefevre, M., et al., Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science, 2009. 324(5923): p. 71-74.
16. Charreteur, F., et al., Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochimica Acta, 2008. 53(6): p. 2925-2938.
17. Jaouen, F., et al., Heat-treated Fe/N/C catalysts for O2 electroreduction: Are active sites hosted in micropores? Journal of Physical Chemistry B, 2006. 110(11): p. 5553-5558.
18. Jaouen, F. and J.P. Dodelet, Non-noble electrocatalysts for O2 reduction: How does heat treatment affect their activity and structure? Part I. Model for carbon black Gasification by NH3: Parametric Calibration and Electrochemical Validation. Journal of Physical Chemistry C, 2007. 111(16): p. 5963-5970.
19. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis, 1986. 38(1-2): p. 5-25.
20. Baranton, S., et al., Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. Journal of Electroanalytical Chemistry, 2005. 577(2): p. 223-234.
21. Schilling, T. and M. Bron, Oxygen reduction at Fe–N-modified multi-walled carbon nanotubes in acidic electrolyte. Electrochimica Acta, 2008. 53(16): p. 5379-5385.
22. Schilling, T., et al., Carbon nanotubes modified with electrodeposited metal porphyrins and phenanthrolines for electrocatalytic applications. Electrochimica Acta, 2010. 55(26): p. 7597-7602.
23. Goubert-Renaudin, S.N.S., X. Zhu, and A. Wieckowski, Synthesis and characterization of carbon-supported transition metal oxide nanoparticles — Cobalt porphyrin as catalysts for electroreduction of oxygen in acids. Electrochemistry Communications, 2010. 12(11): p. 1457-1461.
24. Li, X., et al., Development of durable carbon black/titanium dioxide supported macrocycle catalysts for oxygen reduction reaction. Journal of Power Sources, 2009. 193(2): p. 470-476.
25. Baker, R., D.P. Wilkinson, and J. Zhang, Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochimica Acta, 2008. 53(23): p. 6906-6919.
26. Niwa, H., et al., X-ray photoemission spectroscopy analysis of N-containing carbon-based cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 2011. 196(3): p. 1006-1011.
27. Jansen, R. and F. Beck, Anodic oxidation of cobalt and copper-N4 chelates in the solid state. Electrochimica Acta, 1993. 38(7): p. 907-912.
28. Biddinger, E.J., D. Deak, and U.S. Ozkan, Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts. Topics in Catalysis, 2009. 52(11): p. 1566-1574.
29. Latil, S., et al., Mesoscopic Transport in Chemically Doped Carbon Nanotubes. Physical Review Letters, 2004. 92(25).
30. Strelko, V., Mechanism of reductive oxygen adsorption on active carbons with various surface chemistry. Surface Science, 2004. 548(1-3): p. 281-290.
31. Strelko, V.V., V.S. Kuts, and P.A. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon, 2000. 38(10): p. 1499-1503.
32. Liu, G., et al., Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochimica Acta, 2010. 55(8): p. 2853-2858.
33. Nguyen-Thanh, D., et al., Cobalt–polypyrrole–carbon black (Co–PPY–CB) electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells: Composition and kinetic activity. Applied Catalysis B: Environmental, 2011. 105(1-2): p. 50-60.
34. Li, S., et al., Synthesis of carbon-supported binary FeCo–N non-noble metal electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2010. 55(24): p. 7346-7353.
35. Gupta, S., et al., Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. Journal of Applied Electrochemistry, 1989. 19(1): p. 19-27.
36. Ma, Y., et al., Cobalt based non-precious electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells. Electrochimica Acta, 2010. 55(27): p. 7945-7950.
37. Choi, C.H., et al., Highly active N-doped-CNTs grafted on Fe/C prepared by pyrolysis of dicyandiamide on Fe2O3/C for electrochemical oxygen reduction reaction. Applied Catalysis B: Environmental, 2011. 103(3-4): p. 362-368.
38. Kothandaraman, R., et al., Non-precious oxygen reduction catalysts prepared by high-pressure pyrolysis for low-temperature fuel cells. Applied Catalysis B: Environmental, 2009. 92(1-2): p. 209-216.
39. Matter, P., L. Zhang, and U. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006. 239(1): p. 83-96.
40. Ghosh, K., et al., Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon, 2010. 48(1): p. 191-200.
41. Ghosh, K., et al., Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources. Carbon, 2009. 47(6): p. 1565-1575.
42. Higgins, D.C., D. Meza, and Z. Chen, Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Physical Chemistry C, 2010. 114(50): p. 21982-21988.
43. Chen, Y., et al., Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochemistry Communications, 2009. 11(10): p. 2071-2076.
44. Wu, G., et al., Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells. Journal of Materials Chemistry, 2010. 20(15): p. 3059.
45. Higgins, D., Z. Chen, and Z. Chen, Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction. Electrochimica Acta, 2011. 56(3): p. 1570-1575.
46. Choi, J.Y., R.S. Hsu, and Z. Chen, Highly active porous carbon-supported nonprecious metal-N electrocatalyst for oxygen reduction reaction in PEM fuel cells. Journal of Physical Chemistry C, 2010. 114(17): p. 8048-8053.
47. Li, X., G. Liu, and B.N. Popov, Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes. Journal of Power Sources, 2010. 195(19): p. 6373-6378.
48. Wu, G., et al., High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science, 2011. 332(6028): p. 443-447.
49. Yang, L.-R., et al., Enhance the oxygen reduction activity of ruthenium selenide pyrite catalyst with nitrogen-doped carbon. International Journal of Hydrogen Energy, 2011. 36(13): p. 7381-7390.
50. Nallathambi, V., et al., Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. Journal of Power Sources, 2008. 183(1): p. 34-42.
51. Vante, N.A. and H. Tributsch, Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature, 1986. 323(6087): p. 431-432.
52. Zaikovskii, V.I., et al., Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction. Journal of Physical Chemistry B, 2006. 110(13): p. 6881-6890.
53. Zehl, G., et al., On the structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. Angewandte Chemie - International Edition, 2007. 46(38): p. 7311-7314.
54. Montiel, M., et al., Relevance of the synthesis route of Se-modified Ru/C as methanol tolerant electrocatalysts for the oxygen reduction reaction. Journal of Power Sources, 2010. 195(9): p. 2478-2487.
55. Cheng, H., W. Yuan, and K. Scott, Influence of thermal treatment on RuSe cathode materials for direct methanol fuel cells. Fuel Cells, 2007. 7(1): p. 16-20.
56. Liu, G., H. Zhang, and J. Hu, Novel synthesis of a highly active carbon-supported Ru85Se15 chalcogenide catalyst for the oxygen reduction reaction. Electrochemistry Communications, 2007. 9(11): p. 2643-2648.
57. Cao, D., et al., Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. Journal of The Electrochemical Society, 2006. 153(5): p. A869-A874.
58. Lewera, A., et al., Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media. Electrochimica Acta, 2007. 52(18): p. 5759-5765.
59. Salazar-Banda, G.R., et al., The processes involved in the Se electrodeposition and dissolution on Au electrode: The H2Se formation. Journal of Solid State Electrochemistry, 2008. 12(6): p. 679-686.
60. Zhao, H., H.W. Schils, and C.J. Raub, Untersuchungen im system ruthenium-selen-tellur. Journal of The Less-Common Metals, 1985. 113(1): p. 75-82.
61. Shen, M.Y., et al., Preparation and oxygen reduction activity of stable RuSex/C catalyst with pyrite structure. Electrochimica Acta, 2009. 54(18): p. 4297-4304.
62. Chiao, S.P., et al., Carbon supported Ru1-xFexSey electrocatalysts of pyrite structure for oxygen reduction reaction. International Journal of Hydrogen Energy, 2010. 35(13): p. 6508-6517.
63. Feng, Y., et al., Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance. Electrochimica Acta, 2011. 56(3): p. 1009-1022.
64. Okamoto H. "Co-Se (Cobalt-Selenium)", Binary Alloy Phase Diagrams, 2nd Ed., Ed. T.B. Massalski 2 (1990) 1235–1237.
65. Furuseth S., Kjekshus A., Andresen A.F.: "On the Magnetic Properties of CoSe2, NiS2, and NiSe2", Acta Chem. Scand. 23 (1969) 2325–2334.
66. Kamimura T., Sato M., Takahashi H., Mori N., Yoshida H., Kaneko T.: "Pressure-induced phase transition in Fe-Se and Fe-S systems with a NiAs-type structure", J. Magn. Magn. Mater. 104/107 (1992) 255–256.
67. Feng, Y.J., T. He, and N. Alonso-Vante. Structure phase transition and oxygen reduction activity in acidic medium of carbon-supported cobalt selenide nanoparticles. 2009.
68. Susac, D., et al., A methodology for investigating new nonprecious metal catalysts for PEM fuel cells. Journal of Physical Chemistry B, 2006. 110(22): p. 10762-10770.
69. Zhu, L., et al., Structure of sputtered Co–Se thin films prepared for an application in catalysis. Journal of Solid State Chemistry, 2006. 179(12): p. 3942-3948.
70. Teo, M.Y.C., et al., Photoinduced structural conversions of transition metal chalcogenide materials. Journal of Physical Chemistry A, 2010. 114(12): p. 4173-4180.
71. Feng, Y., T. He, and N. Alonso-Vante, In situ free-surfactant synthesis and ORR-electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles. Chemistry of Materials, 2008. 20(1): p. 26-28.
72. Nekooi, P., M. Akbari, and M.K. Amini, CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. International Journal of Hydrogen Energy, 2010. 35(12): p. 6392-6398.
73. Zhang, W., et al., A hydrothermal synthesis of orthorhombic nanocrystalline cobalt diselenide CoSe2. Materials Research Bulletin, 2000. 35(14-15): p. 2403-2408.
74. Gao, M.R., et al., Synthesis of unique ultrathin lamellar mesostructured CoSe 2-amine (protonated) nanobelts in a binary solution. Journal of the American Chemical Society, 2009. 131(22): p. 7486-7487.
75. Gao, M.-R., et al., In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance. Journal of Materials Chemistry, 2010. 20(42): p. 9355.
76. Feng, Y., T. He, and N. Alonso-Vante, Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochimica Acta, 2009. 54(22): p. 5252-5256.
77. Zhu, L., et al., Synthesis, characterization of a CoSe2 catalyst for the oxygen reduction reaction. Applied Catalysis A: General, 2010. 386(1-2): p. 157-165.
78. Maldonado, S., S. Morin, and K. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon, 2006. 44(8): p. 1429-1437.
79. Kundu, S., et al., Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. Journal of Physical Chemistry C, 2009. 113(32): p. 14302-14310.
80. Kundu, S., et al., The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Physical Chemistry Chemical Physics, 2010. 12(17): p. 4351.
81. Liu, H., et al., Structural and morphological control of aligned nitrogen-doped carbon nanotubes. Carbon, 2010. 48(5): p. 1498-1507.
82. Choi, H.C., J. Park, and B. Kim, Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy. Journal of Physical Chemistry B, 2005. 109(10): p. 4333-4340.
83. Chen, Y., et al., Nitrogen Doping Effects on Carbon Nanotubes and the Origin of the Enhanced Electrocatalytic Activity of Supported Pt for Proton-Exchange Membrane Fuel Cells. The Journal of Physical Chemistry C, 2011. 115(9): p. 3769-3776.
84. Nxumalo, E.N., et al., The influence of nitrogen sources on nitrogen doped multi-walled carbon nanotubes. Journal of Organometallic Chemistry, 2010. 695(24): p. 2596-2602.
85. Deng, D., et al., Toward N-Doped Graphene via Solvothermal Synthesis. Chemistry of Materials, 2011. 23(5): p. 1188-1193.
86. Chen, Y., et al., Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported pt for proton-exchange membrane fuel Cells. Journal of Physical Chemistry C, 2011. 115(9): p. 3769-3776.

無法下載圖示 全文公開日期 2016/07/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE