簡易檢索 / 詳目顯示

研究生: 呂文堯
Wen-Yao Lu
論文名稱: 鋼筋混凝土托架及含開口深梁剪力強度之研究
A Study of Shear Strength of Reinforced Concrete Corbels and Deep Beams with Web Openings
指導教授: 林英俊
Ing-Jaung Lin
口試委員: 林建宏
Chien-Hung Lin
黃世建
Shyh-Jiann Hwang
陳生金
Sheng-Jin Chen
陳正誠
Cheng-Cheng Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 167
中文關鍵詞: 托架含開口深梁剪力強度
外文關鍵詞: corbels, deep beams with web openings, shear strength
相關次數: 點閱:294下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究規劃39個剪跨-深比大於1之鋼筋混凝土托架試體進行試驗。試驗結果顯示,剪跨-深比愈小之托架,其剪力強度愈高。試驗結果亦顯示,混凝土抗壓強度愈高及垂直剪力鋼筋參數愈高之托架,其剪力強度也愈高。
    本研究亦建議了一個托架剪力強度分析方法。本研究將托架試體試驗結果與本研究建議之分析方法、ACI規範之壓拉桿模型及ACI規範第11.9節之托架設計條款所得托架剪力強度分析值詳加比對。結果顯示,對於剪跨-深比介於0.11和1.69及混凝土抗壓強度介於14.5 MPa和105 MPa間之托架,本研究所建議之分析方法及ACI規範之壓拉桿模型皆能合理地預測其剪力強度。而ACI規範第11.9節之托架設計條款對於剪跨-深比較小、混凝土抗壓強度較高之托架,其所得剪力強度預測值有過於保守之現象。
    本研究同時規劃了18個含開口鋼筋混凝土深梁試體進行試驗。試驗結果顯示,混凝土抗壓強度愈高及撓曲鋼筋參數愈高之含開口深梁,其剪力強度愈高。
    本研究亦建議了一個含開口深梁之剪力強度分析方法。本研究將含開口深梁試體試驗結果與本研究建議之分析方法、Tan等人之壓拉桿模型及Kong 和 Sharp之經驗公式所得剪力強度分析值詳加比對。結果顯示,相較於Tan等人之壓拉桿模型,本研究建議之分析方法能更精確地預測含開口深梁之剪力強度。本研究所建議之分析方法能有效地掌握各參數對含開口鋼筋混凝土深梁剪力強度之影響。Kong 和 Sharp之經驗公式則無法有效掌握各參數對含開口深梁剪力強度之影響。


    In this study, 39 reinforced concrete corbels with shear span-to-depth ratio greater than unity were tested. Test results indicate that the lower the shear span-to-depth ratio the higher the shear strength of corbels is. The higher the compressive strength of concrete the higher the shear strength of corbels is. The higher the vertical stirrup parameter the higher the shear strength of corbels is.
    An analytical model for determining the shear strength of reinforced concrete corbels is also proposed in this study. The shear strengths predicted by the proposed method, the strut-and-tie model and the design provision of section 11.9 of the ACI Code are compared with available test results. The comparisons show that both the proposed method and the strut-and-tie model of ACI Code can reasonably predict the shear strengths of reinforced concrete corbels with shear span-to-depth ratio from 0.11 to 1.69 and with compressive strength of concrete from14.5 MPa to 105 MPa. The comparisons also show that the design provision of section 11.9 of the ACI Code is overly conservative for corbels with lower shear span-to-depth ratio and higher compressive strength of concrete.
    In this study, 18 reinforced concrete deep beams with web openings were tested. Test results indicate that the higher the compressive strength of concrete the higher the shear strength of deep beams is. The higher the flexural steel parameter the higher the shear strength of deep beams is. An analytical model for determining the shear strength of reinforced concrete deep beams with web openings is also proposed in this study. The shear strengths predicted by the proposed method, the strut-and-tie model of Tan et al. and the empirical formula of Kong and Sharp are compared with available test results. The comparisons show that the proposed method can more accurately predict the shear strengths of reinforced concrete deep beams with web openings than the strut-and-tie model of Tan et al. The comparisons also show that the proposed method can simulate well the effect of various parameters on the shear strengths of reinforced concrete deep beams with web openings. The empirical formula of Kong and Sharp cannot simulate well the effect of various parameters on the shear strengths of reinforced concrete deep beams with web openings.

    目錄 表索引 Ⅳ 圖索引 V 第一章 緒論 1.1 研究背景與目的 1 1.2 研究方法與步驟 4 第二章 文獻回顧 2.1 鋼筋混凝土托架之文獻回顧 6 2.1.1美國ACI規範第11.9節 6 2.1.2美國ACI規範附錄A之壓拉桿模型 8 2.1.3軟化壓拉桿模型 10 2.1.4鋼筋混凝土托架之試驗回顧 11 2.2 含開口鋼筋混凝土深梁之文獻回顧 13 2.2.1含開口深梁之KONG和SHARP分析法 13 2.2.2含開口深梁之TAN等人壓拉桿模型分析法 15 2.2.3軟化壓拉桿模型分析不含開口深梁之剪力強度 18 2.2.4含開口深梁之試驗回顧 20 第三章 鋼筋混凝土托架之剪力強度 3.1 鋼筋混凝土托架之剪力強度試驗 24 3.1.1試驗目的 24 3.1.2 試驗規劃 24 3.1.2.1 未削邊托架試體 25 3.1.2.2削邊托架試體 26 3.1.3試驗結果 28 3.1.3.1 未削邊托架試體 28 3.1.3.2削邊托架試體 30 3.2 鋼筋混凝土托架之剪力強度分析 31 3.2.1 托架之軟化壓拉桿分析模型 31 3.2.2 托架之分析結果 35 第四章 含開口鋼筋混凝土深梁之剪力強度 4.1 含開口鋼筋混凝土深梁之剪力強度試驗 40 4.1.1試驗目的 40 4.1.2試驗規劃 40 4.1.3 含開口深梁試體製作 41 4.1.4 含開口深梁試體之試驗 43 4.1.5 含開口深梁試體之試驗結果 43 4.1.6 國外含開口深梁試體試驗資料 47 4.2 含開口鋼筋混凝土深梁之剪力強度分析 48 4.2.1本研究建議之分析方法 48 4.2.2含開口鋼筋混凝土深梁之分析結果 52 第五章 結論與建議 5.1 結論 57 5.1.1 托架剪力強度之試驗結果 57 5.1.2 托架剪力強度之分析結果 58 5.1.3含開口深梁之試驗結果 59 5.1.4含開口深梁之分析結果 61 5.2 後續研究建議 63 符號說明 64 參考文獻 69 本文圖表 78 附錄 A 削邊托架垂直拉桿之修正 附錄 B 計算例 表索引 表 3-1 未削邊托架試體之詳細資料[52] 78 表 3-2 未削邊托架試體之鋼筋性質[52] 79 表 3-3 未削邊托架試體之預拌混凝土詳細資料[52] 80 表 3-4 削邊托架試體之詳細資料[53] 81 表 3-5 削邊托架試體之鋼筋性質[53] 82 表 3-6 削邊托架試體之預拌混凝土詳細資料[53] 83 表 3-7 未削邊托架試體之試驗結果[52] 84 表 3-8 削邊托架試體之試驗結果[53] 85 表 3-9 剪跨-深比大於1未削邊托架試驗結果與分析值之比較 86 表 3-10 剪跨-深比大於1削邊托架試驗結果與分析值之比較 87 表 3-11 對角壓力破壞未削邊托架試驗結果與分析值之比較 88 表 3-12 撓曲破壞未削邊托架試驗結果與分析值之比較 89 表 3-13 對角壓力破壞削邊托架試驗結果與分析值之比較 90 表 3-14 撓曲破壞削邊托架試驗結果與分析值之比較 91 表 4-1 含開口鋼筋混凝土深梁試體規劃總表 92 表 4-2 含開口鋼筋混凝土深梁試體之鋼筋性質 93 表 4-3 含開口鋼筋混凝土深梁試體預拌混凝土詳細資料 94 表 4-4 含開口鋼筋混凝土深梁試體之詳細資料 95 表 4-5 含開口鋼筋混凝土深梁試體之試驗結果 96 表 4-6 國外含開口鋼筋混凝土深梁試體[35,38,42]之詳細資料 97 表 4-7 本研究含開口深梁試體之試驗結果與分析值之比較 98 表 4-8 國外含開口深梁 [35,38,42]之試驗結果與分析值之比較 99 表 4-9 本研究及國外含開口深梁之試驗結果與分析值之比較 100 圖索引 圖 1-1 托架支承之預鑄梁 101 圖 1-2 深梁之自然傳力路徑 102 圖 1-3 含開口深梁之力傳遞路徑 103 圖 1-4 開口上方設置水平抗拉鋼筋 104 圖 2-1 剪跨-深比小於1托架之配筋與剪力破壞 105 圖 2-2 美國ACI規範[11]附錄A之壓拉桿模型 106 圖 2-3 通過壓桿之鋼筋 107 圖 2-4 托架之軟化壓拉桿分析模型 108 圖 2-5 對角壓力強度之求解程序 109 圖 2-6 含開口深梁之裂縫及破壞型式 110 圖 2-7 含開口深梁之力傳遞路徑 111 圖 2-8 Kong和Sharp[24]之經驗公式示意圖 112 圖 2-9 Tan等人含開口深梁之壓拉桿分析模型示意圖 113 圖 2-10 Tan等人含開口深梁剪力強度之求解程序 114 圖 2-11 不含開口深梁之軟化壓拉桿模型抗剪機制 115 圖 3-1 本研究測試之托架試體類別 116 圖 3-2 未削邊托架試體詳圖 117 圖 3-3 未削邊托架試體加載裝置圖 118 圖 3-4 削邊托架試體詳圖 119 圖 3-5 削邊托架試體加載裝置圖 120 圖 3-6 未削邊托架之典型破壞模式 121 圖 3-7 未削邊托架之典型剪力與鋼筋應變曲線 122 圖 3-8 未削邊托架剪力與變位曲線 123 圖 3-9 削邊托架之典型破壞模式 124 圖 3-10 削邊托架之典型剪力與鋼筋應變曲線 125 圖 3-11 削邊托架典型之剪力與變位曲線 126 圖 3-12 未削邊托架軟化壓拉桿模型力傳遞機制 127 圖 3-13 削邊托架軟化壓拉桿模型力傳遞機制 128 圖 3-14 托架對角壓力強度之求解程序 129 圖 3-15 剪跨-深比對托架剪力強度評估之影響 130 圖 3-16 混凝土強度對托架剪力強度評估之影響 131 圖 4-1 不含水平及垂直箍筋之含開口深梁試體 132 圖 4-2 含水平箍筋之含開口深梁試體 133 圖 4-3 含間距200 mm垂直箍筋之含開口深梁試體 134 圖 4-4 含間距100 mm垂直箍筋之含開口深梁試體 135 圖 4-5 含間距200 mm垂直箍筋及間距125 mm水平箍筋 之含開口深梁試體 136 圖 4-6 含間距100 mm垂直箍筋及間距125 mm水平箍筋 之含開口深梁試體 137 圖 4-7 含開口深梁試體之典型鋼筋應變計位置圖 138 圖 4-8 含開口深梁試體試驗加載裝置圖 139 圖 4-9 含開口深梁試體之裂縫分佈情形及剪力破壞模式 140 圖 4-10 不含箍筋之典型含開口深梁載重與鋼筋應變曲線 141 圖 4-11 不含垂直箍筋之典型含開口深梁載重與鋼筋應變曲線 142 圖 4-12 含水平及垂直箍筋之典型含開口深梁載重與鋼筋應變曲線 143 圖 4-13 含開口深梁試體載重與變位曲線圖 144 圖 4-14 混凝土強度對含開口深梁試體載重與變位曲線之影響 145 圖 4-15 水平箍筋對含開口深梁試體載重與變位曲線之影響 146 圖 4-16 垂直箍筋對含開口深梁試體載重與變位曲線之影響 147 圖 4-17 Kong等人[35]試體之開口及配筋情形 148 圖 4-18 Kong和Kubik[38]之試體開口情形 149 圖 4-19 Guan和Kong[42]之試體開口情形 150 圖 4-20 本研究含開口深梁之剪力傳遞路徑 151 圖 4-21 含開口深梁之上剪力傳遞路徑 152 圖 4-22 含開口深梁之下剪力傳遞路徑 153 圖 4-23 對角壓力強度 之求解程序 154 圖 4-24 對角壓力強度 之求解程序 155 圖 4-25 混凝土強度對含開口深梁剪力強度評估之影響 156 圖 4-26 剪跨-深比對含開口深梁剪力強度評估之影響 157 圖 4-27 水平抗拉鋼筋對含開口深梁剪力強度評估之影響 158 圖 4-28 撓曲鋼筋參數對含開口深梁剪力強度評估之影響 159 圖 4-29 水平箍筋參數對含開口深梁剪力強度評估之影響 160 圖 4-30 垂直箍筋參數對含開口深梁剪力強度評估之影響 161 圖 4-31 混凝土強度對含開口深梁剪力強度評估之影響 162 圖 4-32 剪跨-深比對含開口深梁剪力強度評估之影響 163 圖 4-33 水平抗拉鋼筋對含開口深梁剪力強度評估之影響 164 圖 4-34 撓曲鋼筋參數對含開口深梁剪力強度評估之影響 165 圖 4-35 水平箍筋參數對含開口深梁剪力強度評估之影響 166 圖 4-36 垂直箍筋參數對含開口深梁剪力強度評估之影響 167

    參考文獻
    [1] Mörsch, E., Concrete-Steel Construction, Translation of the 3rd German Edition by E. P. Goodrich, McGraw-Hill Book Co., New York, 1909, 368 pp.
    [2] ASCE-ACI Committee 426, “The shear strength of reinforced concrete members,” Journal of Structural Division, ASCE, Vol. 99, No. ST6, 1973, pp. 1091-1187.
    [3] Zhang, L.X.B., and Hsu, T.T.C., “Behavior and analysis of 100MPa concrete membrane elements,” Journal of Structural Engineering, ASCE, Vol. 124, No. 1, 1998, pp. 24-34.
    [4] Schlaich, J., and Schäfer, K., “Druck und Querzug in Bewehrten Betonelementen,”Bericht, Institut für Massivbau, Universität Stuttgart, 1982.
    [5] Schlaich, J., and Schäfer, K., “Zur Druck-Querzug-Festigkeit des Stahibetons,”Beton-und Stahlbetonbau, Vol. 3, 1983, pp. 73-78.
    [6] Miyahara, T., Kawakami, T., and Maekawa, K., “Nonlinear behavior of cracked reinforced concrete plate element under uniaxial compression,” Concrete Library International, JSCE, Vol. 11, 1988, pp. 306-319.
    [7] Ueda, M., Noguchi, H., Shirai, N., and Morita, S., “Introduction to activity of new RC,”Proceedings International Workshop on Finite Element Analysis of Reinforced Concrete, Columbia University, New York, 1991.
    [8] Mikame, A., Uchida, K., and Noguchi, H., “A study of compressive deterioration of cracked concrete,” Proceedings International Workshop on Finite Element Analysis of Reinforced Concrete, Columbia University, New York, 1991.
    [9] Vecchio, F.J., and Collins, M.P., “Compression response of cracked reinforced concrete,” Journal of Structural Engineering, ASCE, Vol. 119, No. 12, 1993, pp. 3590-3610.
    [10] ASCE-ACI Committee 445, “Recent Approach to Shear Design of Structural Concrete,” Journal of Structural Engineering, ASCE, Vol. 124, No. 12, December 1998, pp. 1375-1417.
    [11] ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08),” American Concrete Institute, Farmington Hills, Michigan, 2008.
    [12] 中國土木水利工程學會,混凝土工程設計規範解說(土木401-96),科技圖書股份有限公司,台北, 2007.
    [13] Kriz, L. B., and Raths, C. H., “Connections in Precast Concrete Structures - Strength of Corbels,” PCI Journal, Vol. 10, No. 1, February 1965, pp. 16-61.
    [14] Mattock, A. H., Chen, K. C., and Soongswang, K., “The Behavior of Reinforced Concrete Corbels,” PCI Journal, Vol. 21, No. 2, March-April 1976, pp. 52-77.
    [15] Fattuhi, N. I., and Hughes, B. P., “Ductility of Reinforced Concrete Corbels Containing Either Steel Fibers or Stirrups,” ACI Structural Journal, Vol. 86, No. 6, November-December 1989, pp. 644-651.
    [16] 何國彰,「高強度鋼筋混凝土托架之研究」,碩士論文,國立台灣工業技術學院營建系,台北,民國79年,103頁。
    [17] Yong, Y. K., and Balaguru, P., “Behavior of Reinforced High-Strength-Concrete Corbels,” Journal of Structural Engineering, ASCE, Vol. 120, No. 4, April 1994, pp. 1182-1201.
    [18] Fattuhi, N. I., “Reinforced Corbels Made with Plain and Fibrous Concretes,” ACI Structural Journal, Vol. 91, No. 5, September-October 1994, pp. 530-536.
    [19] Foster, S. J., Powell, R. E., and Selim, H. S., “Performance of High-Strength Concrete Corbels,” ACI Structural Journal, Vol. 93, No. 5, September-October 1996, pp. 555-563.
    [20] Hwang, S. J., Lu, W. Y., and Lee, H. J., “Shear Strength Prediction for Reinforced Concrete Corbels,” ACI Structural Journal, Vol. 97, No. 4, July-August 2000, pp. 543-552.
    [21] 呂文堯,游新旺,黃世建,「軟化模式對鋼筋混凝土托架剪力強度評估之影響」,中國土木水利工程學刊,第十三卷,第一期,2001,pp. 11-20。
    [22] Russo, G., Venir, R., Pauletta M., and Somma, G., “Reinforced concrete corbels-shear strength model and design formula,” ACI Structural Journal, Vol. 103, No. 1, 2006, pp. 3-10.
    [23] Kong, F. K., and Sharp, G. R., “Shear Strength of Lightweight Reinforced Concrete Deep Beams with Web Openings,” The Structural Engineer, Vol. 51, No. 8, 1973, pp. 267-275.
    [24] Kong, F. K., and Sharp, G. R., “Structural Idealization for Deep Beams with Web Openings,” Magazine of Concrete Research, Vol. 29, No. 99, 1977, pp. 81-91.
    [25] de Paiva, H. A. R., and Siess, C. P., “Strength and Behavior of Deep Beams in Shear,” Journal of the Structural Division, Proceedings, ASCE, Vol. 91, No. ST5, October 1965, pp. 19-41.
    [26] Kong, F. K., Robins, P. J., and Cole, D. F., “Web Reinforcement Effects on Deep Beams,” ACI Journal, Proceedings, Vol. 67, No. 12, December 1970, pp. 1010-1017.
    [27] Smith, K. N., and Vantsiotis, A. S., “Shear Strength of Deep Beams,” ACI Journal, Proceedings, Vol. 79, No. 3, May-June 1982, pp. 201-213.
    [28] 方一匡,「薄腹版型高強度混凝土梁之剪力強度與韌性研究」,國科會專題研究計畫報告,計畫編號:NSC-82-0410-E006-110,台北,民國82年,145頁。
    [29] 陳俊綺,「薄腹版型高強度混凝土簡支深梁之剪力行為研究」,碩士論文,國立成功大學土木系,台南,民國83年,156頁。
    [30] Tan, K. H., Kong, F. K., Teng, S., and Guan, L., “High-Strength Concrete Deep Beams with Effective Span and Shear Span Variations,” ACI Structural Journal, Vol. 92, No. 4, 1995, pp. 395-405.
    [31] Tan, K. H., Kong, F. K., Teng, S., and Weng, L. W., “Effect of Web Reinforcement on High-Strength Concrete Deep Beams,” ACI Structural Journal, Vol. 94, No. 5, 1997, pp. 572-582.
    [32] Tan, K. H., Teng, S., Kong, F. K., and Lu, H.Y., “Main Tension Steel in High-Strength Concrete Deep and Short Beams,” ACI Structural Journal, Vol. 94, No. 6, pp. 752-768 (1997).
    [33] Foster, S. J., and Gilbert, R. L., “Experimental Studies on High-Strength Concrete Deep Beams,” ACI Structural Journal, Vol. 95, No. 4, 1998, pp. 382-390.
    [34] Aguilar G., Matamoros, A. B., Parra-Montesinos, G. J., Ramirez, J. A., and Wight, J. K., “Experimental Evaluation of Design Procedures for Shear Strength of Deep Reinforced Concrete Beams,” ACI Structural Journal, Vol. 99, No. 4, 2002, pp. 539-548.
    [35] Kong, F. K., Sharp, G. R., Appleton, S. C., Beaumont, C. J., and Kubik, L. A., “Structural Idealization for Deep Beams with Web Openings: Further Evidence,” Magazine of Concrete Research, Vol. 30, No. 103, 1978, pp. 89-95.
    [36] Mansur, M. A., and Awis, W. A. M., “Reinforced Fibre Concrete Deep Beams with Web Openings,” The International Journal of Cement Composites and Lightweight Concrete, Vol. 6, No. 4, 1984, pp. 263-271.
    [37] Siao, W. B., “Deep Beams Revisited,” ACI Structural Journal, Vol. 92, No. 1, 1995, pp. 95-102.
    [38] Kong, F. K., and Kubik, L. A., “A Large Scale Tests on Reinforced Concrete Deep Beams with Web Openings,” University of Cambridge, Project Report CUED/C-Strut./TR. 80. , 1979.
    [39] Ray, S. P., and Reddy, C. S., “Strength of Reinforced Concrete Deep Beams with and without Opening in the Web,” Indian Concrete Journal, Vol. 53, 1979, pp. 242-246.
    [40] Ray, S. P., and Reddy, C. S., “Some Tests on Reinforced Concrete Deep Beams with and without Opening in the Web,” Indian Concrete Journal, Vol. 54, 1980, pp. 189-194.
    [41] Haque, M., and Rasheeduzzafar, and AI-Tayyib, A. H. J., “Stress Distribution in Deep Beams with Web Openings,” Journal of Structural Engineering, ASCE, Vol. 112, No. 5, 1986, pp. 1147-1165.
    [42] Guan, L. W., and Kong, F. K., “Analysis and Design of Reinforced Concrete Deep Beams,” Nanyang Technological University, Singapore, Applied Research Project RP 52/91, 1994.
    [43] Almeida, A. P., and Pinto, N., “High-Strength Concrete Deep Beams with Web Openings,” ACI SP-186, American Concrete Institute, 1999, pp. 597-613.
    [44] Maxwell, B. S., and Breen, J. E., “Experimental Evaluation of Strut-and-Tie Model Applied to Deep Beam with Opening,” ACI Structural Journal, Vol. 97, No. 1, 2000, pp. 142-148.
    [45] Ashour, A. F., and Rishi, G., “Tests of Reinforced Concrete Continuous Deep Beam with Web Openings,” ACI Structural Journal, Vol. 97, No. 3, 2000, pp. 418-426.
    [46] Yang, K. Y., Eun, H. C., and Chung, H. S., “The Influence of Web Openings on the Structural Behavior of Reinforced High-Strength Concrete Deep Beams,” Engineering Structures, Vol. 28, No. 10, 2006, pp. 1825-1834.
    [47] D’Arcy, M., “The Behavior of Simply Supported Concrete Continuous Deep Beam with High Strength Concrete,” BEng Thesis, School of Engineering, Griffith University Gold Coast Campus, Australia, 2002.
    [48] Navok, L. C., and Sprenger, H., “Deep Beam with Opening,” ACI SP-208, American Concrete Institute, 2002, pp. 129-143.
    [49] Tan, K. H., Tong, K., and Tang, C. Y., “Consistent Strut-and-tie Model of Deep Beams with Web Openings,” Magazine of Concrete Research, Vol. 55, No. 1, 2003, pp. 65-75.
    [50] Hwang, S. J., and Lee, H. J., “Strength Prediction for Discontinuity Regions Failing in Diagonal Compressions by Softened Strut-and-tie Model,” Journal of Structural Engineering, ASCE, Vol. 128, No. 12, 2002, pp. 1519-1526.
    [51] Hwang, S. J., Lu, W. Y., and Lee, H. J., “Shear Strength Prediction for Deep Beams,” ACI Structural Journal, Vol. 97, No. 3, May-June 2000, pp. 367-376.
    [52] 陳德儒,「高強度鋼筋混凝土托架之行為」,碩士論文,國立台灣科技大學營建工程系,台北,民國92年,167頁。
    [53] 林榮德,「鋼筋混凝土托架之行為」,碩士論文,國立台灣科技大學營建工程系,台北,民國91年,130頁。
    [54] Schäfer, K., “Strut-and-Tie Models for the Design of Structural Concrete,” Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, March 1996, 140 pp.

    QR CODE