簡易檢索 / 詳目顯示

研究生: 汪軒毅
Hsuan-Yi Wang
論文名稱: 利用自身氧化還原添加劑再生無陽極鋰金屬電池之非活性鋰及量化死鋰平台建立
A redox shuttle additive for rejuvenating the inactive lithium in anode-free lithium-metal battery and demonstrate the platform of quantifying the dead lithium
指導教授: 黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-huang Wu
口試委員: 蘇威年
Wei-Nien Su
吳溪煌
She-huang Wu
黃炳照
Bing Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 120
中文關鍵詞: 無陽極鋰金屬電池非活性鋰固態電解質介質死鋰自身氧化還原量化死鋰酸鹼滴定
外文關鍵詞: anode free lithium metal battery, inactive lithium, solid-electrolyte interphase, dead lithium, redox shuttle, iodide, quantification, acid-base titration
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋰金屬因其高理論電容量(3,860 mAh/g)和低氧化還原電位(-3.04 V vs. SHE)而被公認為是可充電電池負極材料的“聖杯”,在過去的幾十年中已被廣泛的重新審視優化,以用於鋰金屬電池中的實際應用。然而,電池中部份鋰金屬會因為充放電過程中的不可逆反應導致其失去活性而形成非活性鋰,使電池壽命縮短,效率下降,影響其電化學表現。對於新型的無陽極鋰金屬電池,因沒有負極或是鋰金屬可提供過量的鋰源,所以針對鋰的重複使用變得更加重要。因此想要提升無陽極鋰金屬電池的電化學性能,當務之急就是要減少非活性鋰的生成。
本研究探討以I2作為無陽極電池的添加劑,透過離子態I3-/ I-的自身氧化還原反應來使非活性鋰活化,藉此達到電池回春與延長可循環壽命的目的。充電時,I3-會在電流收集器被還原成I-,驅使非活性鋰氧化轉變為鋰離子。而放電時,伴隨著鋰離子回到脫鋰態的正極,還原性添加劑I-也會變氧化成I3-,透過這些往復式的反應,能夠持續回收因循環所形成的非活性鋰。研究發現在1M LiPF6 EC/DEC中添加一定濃度的碘(0.1wt%)之後,NMC532║Cu的無陽極鋰金屬電池在第十圈循環充放電後的電容保持率可以提升至29.28%,相比商用電解液提升了將近10%。透過UV-vis、SEM及XPS分析,證實碘確實與非活性鋰反應。這項工作為提高無陽極鋰金屬電池的性能和延長電池壽命,提供了一種新的解決方案。
第二部分工作是建立了一個滴定量化平台,從多種滴定方式嘗試之後,選擇使用酸鹼指示劑中,變色範圍在中性,且顏色變化明顯的溴瑞香草酚藍來分析鋰銅電池中非活性鋰的死鋰部分,透過分離非活性鋰中固態電解質介質的鋰離子及死鋰的鋰金屬可以比較出不同電解液下這兩者的影響。在眾多電解液中,以1M LiPF6 EC/DEC (v/v : 5/5)添加5 wt% FEC有著最佳的庫倫效率,透過SEM也可看出其表面較為平整,並且從所有量化的數據可歸納出庫倫效率對於SEI與死鋰之間的比值有著一定程度的關係。此平台的建立,可不必透過貴重儀器的分析,利用較為簡單迅速的模式來篩選未來的新型電解液,成為其中一種分析工具。


Li metal, recognized as the “holy grail” of anode materials for rechargeable batteries due to its high theoretical capacities (3,860 mAh/g) and low redox potential (-3.04 V vs. SHE), has been extensively revisited over the past decades for the practical application in lithium-metal batteries (LMBs). However, the severe dendrite and inactive-Li formation upon charging/discharging cause potential safety hazards, poor coulombic efficiency, and cycle performance. For new cell configurations like anode-free lithium metal batteries, the conservation of lithium becomes more critical since there is no negative or lithium metal electrode that can provide excess lithium sources. Therefore, the priority is to reduce inactive lithium formation to enhance the electrochemical performance of an anode-free lithium metal battery.
Herein, we have developed a method to rejuvenate the inactive lithium using I2 as a redox shuttle additive. I3- ion will be reduced to I- at the current collector, converting inactive lithium back into lithium ions. In the discharge state, the reductive additive I- will oxidize to I3-, and replenish the lithium ions to the delithiated cathode. These reactions can continue to recover the inactive lithium formed in subsequent cycles. By adding the 0.1wt% I2 in 1M LiPF6 EC/DEC, the capacity retention of NMC532║Cu cell could enhance to 29.28%, 10% higher than commercial one. Analyzing by UV-vis, SEM and XPS, we proved that the iodide react with the inactive lithium. This work shows a new solution to improve the performances of the anode-free lithium metal batteries and prolong the cell lifespan.
In the second half of the thesis, we demonstrate a novel titration method to quantify the inactive Li within the LMBs. From trying the different titration technique, We have chosen the acid-base indicator, Bromothymol blue, which had the color change in neutral to separate the contribution of Li+ in SEI and the isolated Li in different liquid electrolytes through the developed quantification method. 1M LiPF6 EC/DEC (v/v : 5/5) with 5wt% FEC has the highest coulombic efficiency among all the electrolytes and observed the smooth morphology from the SEM measurement. From all the quantitative results, we could infer that the coulombic efficiency is closely related to the ratio between SEI and dead lithium. Due to the establishment of this platform, we didn’t use costly instruments(GC-MS, NMR), but just developed the simple and efficient tool to facilitate the screening of new electrolyte development in the future.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 X 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 鋰離子電池 2 1-2-1 簡介 2 1-2-2 組成機制 3 1-3 無陽極鋰金屬電池 6 1-4 有機液態電解液 7 1-5 無陽極鋰金屬電池的未來展望與挑戰 9 第二章 文獻回顧 11 2-1. 不可逆電容量 11 2-1-1 鋰/鋰電池 (Lithium/Lithium symmetric cell) 11 2-1-2 鋰/銅電池 (Lithium/Copper cell) 12 2-1-3 正極材料/鋰電池 (Cathode/Lithium cell) 13 2-1-4 正極材料/銅電池 (Cathode/Copper cell) 13 2-2. 非活性鋰 (Inactive lithium) 14 2-2-1. 鋰枝晶 (Lithium dendrite) 15 2-2-2. 死鋰 (Dead lithium) 16 2-2-3. 固態電解質介面層 (Solid Electrolyte Interphase, SEI層) 17 2-3. 自身氧化還原添加劑 17 2-4. 非活性鋰量化 21 2-4-1. 氣體分析 22 2-4-2. 表面分析 26 2-5. 研究動機與目的 29 第三章 實驗方法及儀器 33 3-1. 實驗藥品 33 3-2. 實驗設備 34 3-3. 實驗方法與分析手法 35 3-3-1. 極片製備 35 3-3-2. 鈕扣式電池零件清洗 36 3-3-3. 鈕扣式電池組裝 37 3-3-4. 酸鹼指示劑的配置 39 3-4. 酸鹼滴定法 39 3-5. 電化學測試 40 3-5-1. 充放電測試(Charge/discharge test) 40 3-5-2. 循環伏安法分析(Cyclic voltammetry) 42 3-6. 儀器原理與分析方式 42 3-6-1. 掃描式電子顯微鏡(FE-SEM) 42 3-6-2. X光射線光電子光譜(XPS) 44 3-6-3. 氣相層析質譜儀(GC-MS) 44 3-6-4. 紫外-可見光光譜儀(UV-Vis) 44 第四章 自身氧化還原添加劑 45 4-1. 商用電解液與碘添加劑之電化學表現 45 4-2. 碘添加劑濃度優化 48 4-3. 電流收集器之材料比較 51 4-4. 自身氧化還原反應之判定 60 4-5. 循環後電流收集器表面鑑定分析 61 4-6. 不可逆電容量之分析 68 4-7. 反應機制之探討 69 第五章 滴定量化平台建立 71 5-1. 滴定法選擇 71 5-1-1. 碘滴定法 71 5-1-2. CN-滴定法 72 5-1-3. 酸鹼滴定法 76 5-2. 酸鹼指示劑選擇 77 5-3. 檢量線測定 78 5-4. 滴定用電解液選擇 79 5-5. 銅箔潤洗之酸鹼值比較 80 5-6. 量化平台結果分析 82 5-7. 儀器分析判斷 88 第六章 結論 91 第七章 未來展望 93 參考文獻 95

1. Manthiram, A., Materials challenges and opportunities of lithium ion batteries. The Journal of Physical Chemistry Letters, 2011, 2 (3), 176-184.
2. Xiao, J., How lithium dendrites form in liquid batteries. Science, 2019, 366 (6464), 426-427.
3. Xie, Z.; Wu, Z.; An, X.; Yue, X.; Wang, J.; Abudula, A.; Guan, G., Anode-free rechargeable lithium metal batteries: progress and prospects. Energy Storage Materials, 2020, 32, 386-401.
4. Zhang, J.-G., Anode-less. Nature Energy, 2019, 4 (8), 637-638.
5. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980, 15 (6), 783-789.
6. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today, 2015, 18 (5), 252-264.
7. Madian, M.; Eychmüller, A.; Giebeler, L., Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries, 2018, 4 (1), 7.
8. Kim, H.-J.; Krishna, T.; Zeb, K.; Rajangam, V.; Gopi, C. V.; Sambasivam, S.; Raghavendra, K. V. G.; Obaidat, I. M., A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics, 2020, 9 (7), 1161.
9. Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K., High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews, 2018, 1 (1), 35-53.
10. Noel, M.; Suryanarayanan, V., Role of carbon host lattices in Li-ion intercalation/de-intercalation processes. Journal of power sources, 2002, 111 (2), 193-209.
11. Becker, C. R.; Strawhecker, K. E.; McAllister, Q. P.; Lundgren, C. A., In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries. Acs Nano, 2013, 7 (10), 9173-9182.
12. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010, 55 (22), 6332-6341.
13. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J. G., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials, 2016, 26 (39), 7094-7102.
14. Read, J., Ether-based electrolytes for the lithium/oxygen organic electrolyte battery. Journal of The Electrochemical Society, 2005, 153 (1), A96.
15. Hui, C.-y.; Kan, C.-w.; Mak, C.-l.; Chau, K.-h., Flexible energy storage system—an introductory review of textile-based flexible supercapacitors. Processes, 2019, 7 (12), 922.
16. Song, J.; Wang, Y.; Wan, C., Conductivity study of porous plasticized polymer electrolytes based on poly (vinylidene fluoride) a comparison with polypropylene separators. Journal of The Electrochemical Society, 2000, 147 (9), 3219.
17. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162 (2), 1379-1394.
18. Jote, B. A.; Beyene, T. T.; Sahalie, N. A.; Weret, M. A.; Olbassa, B. W.; Wondimkun, Z. T.; Berhe, G. B.; Huang, C.-J.; Su, W.-N.; Hwang, B. J., Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. Journal of Power Sources, 2020, 461, 228102.
19. Tong, Z.; Bazri, B.; Hu, S.-F.; Liu, R.-S., Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A 2021, 9 (12), 7396-7406.
20. Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature communications, 2021, 12 (1), 1-10.
21. Hagos, T. M.; Bezabh, H. K.; Huang, C.-J.; Jiang, S.-K.; Su, W.-N.; Hwang, B. J., A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Accounts of chemical research, 2021, 54 (24), 4474-4485.
22. Qiu, C.; He, G.; Shi, W.; Zou, M.; Liu, C., The polarization characteristics of lithium-ion batteries under cyclic charge and discharge. Journal of Solid State Electrochemistry, 2019, 23 (6), 1887-1902.
23. Ryou, M. H.; Lee, Y. M.; Lee, Y.; Winter, M.; Bieker, P., Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Advanced Functional Materials, 2015, 25 (6), 834-841.
24. Koo, D.; Kwon, B.; Lee, J.; Lee, K. T., Asymmetric behaviour of Li/Li symmetric cells for Li metal batteries. Chemical Communications, 2019, 55 (65), 9637-9640.
25. Cheng, J.-H.; Assegie, A. A.; Huang, C.-J.; Lin, M.-H.; Tripathi, A. M.; Wang, C.-C.; Tang, M.-T.; Song, Y.-F.; Su, W.-N.; Hwang, B. J., Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. The Journal of Physical Chemistry C, 2017, 121 (14), 7761-7766.
26. Zhang, X.-Q.; Wang, X.-M.; Li, B.-Q.; Shi, P.; Huang, J.-Q.; Chen, A.; Zhang, Q., Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of Materials Chemistry A, 2020, 8 (8), 4283-4289.
27. Betz, J.; Brinkmann, J. P.; Nölle, R.; Lürenbaum, C.; Kolek, M.; Stan, M. C.; Winter, M.; Placke, T., Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Advanced energy materials, 2019, 9 (21), 1900574.
28. Heider, U.; Oesten, R.; Jungnitz, M., Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level. Journal of Power Sources, 1999, 81, 119-122.
29. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000, 89 (2), 206-218.
30. Dornbusch, D. A.; Hilton, R.; Lohman, S. D.; Suppes, G. J., Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries. Journal of The Electrochemical Society, 2014, 162 (3), A262.
31. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 2017, 117 (15), 10403-10473.
32. Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N. P., Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS central science, 2016, 2 (11), 790-801.
33. Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A, 2017, 5 (23), 11671-11681.
34. Aurbach, D.; Markovsky, B.; Shechter, A.; Ein‐Eli, Y.; Cohen, H., A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate‐dimethyl carbonate mixtures. Journal of The Electrochemical Society, 1996, 143 (12), 3809.
35. Besenhard, J.; Winter, M.; Yang, J.; Biberacher, W., Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995, 54 (2), 228-231.
36. Kang, S.-H.; Abraham, D.; Xiao, A.; Lucht, B., Investigating the solid electrolyte interphase using binder-free graphite electrodes. Journal of Power Sources, 2008, 175 (1), 526-532.
37. Aurbach, D.; Levi, M. D.; Levi, E.; Schechter, A., Failure and stabilization mechanisms of graphite electrodes. The Journal of Physical Chemistry B, 1997, 101 (12), 2195-2206.
38. Bryngelsson, H.; Stjerndahl, M.; Gustafsson, T.; Edström, K., How dynamic is the SEI? Journal of Power Sources, 2007, 174 (2), 970-975.
39. Edström, K.; Herstedt, M.; Abraham, D. P., A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. Journal of Power Sources, 2006, 153 (2), 380-384.
40. Hagos, T. T.; Su, W.-N.; Huang, C.-J.; Thirumalraj, B.; Chiu, S.-F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Tegegne, W. A., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources, 2020, 461, 228053.
41. Hagos, T. M.; Berhe, G. B.; Hagos, T. T.; Bezabh, H. K.; Abrha, L. H.; Beyene, T. T.; Huang, C.-J.; Yang, Y.-W.; Su, W.-N.; Dai, H., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta, 2019, 316, 52-59.
42. Adachi, M.; Tanaka, K.; Sekai, K., Aromatic compounds as redox shuttle additives for 4 V class secondary lithium batteries. Journal of The Electrochemical Society, 1999, 146 (4), 1256.
43. Buhrmester, C.; Chen, J.; Moshurchak, L.; Jiang, J.; Wang, R. L.; Dahn, J., Studies of aromatic redox shuttle additives for LiFePO4-based Li-ion cells. Journal of the electrochemical society, 2005, 152 (12), A2390.
44. Jin, C.; Liu, T.; Sheng, O.; Li, M.; Liu, T.; Yuan, Y.; Nai, J.; Ju, Z.; Zhang, W.; Liu, Y., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nature Energy, 2021, 6 (4), 378-387.
45. Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y., Quantifying inactive lithium in lithium metal batteries. Nature, 2019, 572 (7770), 511-515.
46. McShane, E. J.; Colclasure, A. M.; Brown, D. E.; Konz, Z. M.; Smith, K.; McCloskey, B. D., Quantification of inactive lithium and solid–electrolyte interphase species on graphite electrodes after fast charging. ACS Energy Letters, 2020, 5 (6), 2045-2051.
47. Uhlmann, C.; Illig, J.; Ender, M.; Schuster, R.; Ivers-Tiffée, E., In situ detection of lithium metal plating on graphite in experimental cells. Journal of Power Sources, 2015, 279, 428-438.
48. Petzl, M.; Danzer, M. A., Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. Journal of Power Sources, 2014, 254, 80-87.
49. Jin, Y.; Kneusels, N.-J. H.; Magusin, P. C.; Kim, G.; Castillo-Martínez, E.; Marbella, L. E.; Kerber, R. N.; Howe, D. J.; Paul, S.; Liu, T., Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. Journal of the American Chemical Society, 2017, 139 (42), 14992-15004.
50. Shitaw, K. N.; Yang, S. C.; Jiang, S. K.; Huang, C. J.; Sahalie, N. A.; Nikodimos, Y.; Weldeyohannes, H. H.; Wang, C. H.; Wu, S. H.; Su, W. N., Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode‐Free Li‐Metal Battery. Advanced Functional Materials, 2021, 31 (6), 2006951.
51. He, M.; Boulet-Roblin, L.; Borel, P.; Tessier, C.; Novák, P.; Villevieille, C.; Berg, E. J., Effects of solvent, lithium salt, and temperature on stability of carbonate-based electrolytes for 5.0 V LiNi0. 5Mn1. 5O4 electrodes. Journal of The Electrochemical Society, 2015, 163 (2), A83.
52. Xu, S.-D.; Zhuang, Q.-C.; Wang, J.; Xu, Y.-Q.; Zhu, Y.-B., New insight into vinylethylene carbonate as a film forming additive to ethylene carbonate-based electrolytes for lithium-ion batteries. Int. J. Electrochem. Sci, 2013, 8 (6), 8058-8076.
53. Holtstiege, F.; Schmuch, R.; Winter, M.; Brunklaus, G.; Placke, T., New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2018, 378, 522-526.
54. Hsieh, Y.-C.; Leißing, M.; Nowak, S.; Hwang, B.-J.; Winter, M.; Brunklaus, G., Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Reports Physical Science, 2020, 1 (8), 100139.
55. Mohammed, A.; Abdullah, A. In Scanning electron microscopy (SEM): A review, Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 2018; pp 7-9.
56. Zhu, F.-Y.; Wang, Q.-Q.; Zhang, X.-S.; Hu, W.; Zhao, X.; Zhang, H.-X., 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology, 2014, 25 (18), 185705.
57. Breuer, P.; Sutcliffe, C.; Meakin, R., Cyanide measurement by silver nitrate titration: Comparison of rhodanine and potentiometric end-points. Hydrometallurgy, 2011, 106 (3-4), 135-140.
58. Senanayake, G., The cyanidation of silver metal: Review of kinetics and reaction mechanism. Hydrometallurgy, 2006, 81 (2), 75-85.

無法下載圖示 全文公開日期 2027/08/22 (校內網路)
全文公開日期 2027/08/22 (校外網路)
全文公開日期 2027/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE