簡易檢索 / 詳目顯示

研究生: 王修駿
Shiou-Chun Wang
論文名稱: 圓形複合式橋柱之結構行為
Structural Behavior of Circular Composite Bridge Piers
指導教授: 陳生金
Sheng-Jin Chen
口試委員: 林英俊
Ing-Jaung Lin
鄭蘩
Van Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 173
中文關鍵詞: 複合式橋柱鋼管橋柱圓形斷面結構行為剪力強度耐震結構韌性複合式斷面
外文關鍵詞: steel tube, composite bridge pier, structural behavior, Circular
相關次數: 點閱:188下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試開發一個新的橋柱結構系統,橋柱剪力強度是由鋼管及圍束混凝土貢獻,撓曲強度是由主筋及混凝土所形成之力偶提供,而且鋼管亦可成為橋柱施工所需之模板,因此複合式橋柱並不需要配置橫向鋼筋。經由試驗來探討圓形複合式橋柱之結構行為,試驗參數規劃主筋量、跨深比的影響。研究結果顯示:(1) 複合式斷面的剪力強度以混凝土剪力強度與鋼管剪力強度疊加法評估,可以得到準確且保守的設計。 (2)複合式橋柱桿件的極限強度與剪力韌性皆比傳統R.C.柱桿件為佳。


    This reported research examined a newly developed system. In this innovative design, the shear strength of the bridge pier is contributed from steel tube and the confined concrete. The flexural strength is from the longitudinal reinforcing bars and the concrete. These steel tube can also provide as the forms in the construction of reinforced columns. The transverse steel is not necessary in this new type composite bridge pier. A series of experimental studies were carried out to examine the behavior of the proposed composite bridge piers. The effect of the reinforcement, and shear span of the member were examined. It is found that the shear strength of the proposed composite bridges pier can be calculated based on the summation of the shear strength of concrete section and the tubular steel section. The experimental studies also demonstrated that the proposed composite type bridge pier is able to provide not only better strength but also superior ductility as compared with that of conventional reinforced concrete bridge piers.

    摘要 致謝 目錄 表索引 圖索引 符號表 第一章 緒論 1.1前言 1.2研究動機與目的 1.3研究的方法與內容 第二章 圓形複合式混凝土橋柱之剪力分析 2.1 前言 2.2 文獻回顧 2.2.1複合式混凝土橋柱的開發 2.2.2鋼管圍束混凝土柱 2.2.3鋼管混凝土 2.2.4鋼管包覆耐震補強 2.3 鋼筋混凝土剪力容量設計 2.3.1鋼筋混凝土橋柱剪力容量設計 2.3.1.1 ATC-40規範 (1996) 2.3.1.2 Aschheim and Moehle (1993) 2.3.1.3 Priestley,Verma,and Xiao(1994) 2.3.2鋼筋混凝土剪力容量設計(ACI 318-02) 2.4 鋼板補強剪力強度評估 2.5 圓形複合式混凝土橋柱之剪力強度設計建議 2.6 橋柱之理論分析 2.6.1混凝土行為的建議 2.6.2鋼筋與鋼板行為的建議 第三章 試體設計、製作與測試計畫 3.1試驗規劃 3.1.1 試體設計 3.2 試體製作 3.3 量測系統配置與試驗程序建立 3.3.1 量測系統配置 3.3.2 加載程序建立 第四章 試驗結果與分析 4.1 前言 4.2 材料試驗結果 4.3 試驗過程及破壞形式之觀察比較 4.4 外部鋼管與主筋應變計變化之比較 4.4.1 主筋應變計之比較 4.4.2 圓形複合式斷面鋼管應變計之變化比較 4.5 跨深比之比較 4.6 主筋量之比較 4.7 圓形複合式混凝土斷面之性能探討 4.7.1 試驗彎矩強度與計算彎矩容量之比較 4.7.2 試驗剪力強度與計算剪力容量之比較 4.7.3 圓形複合式混凝土橋柱韌性比之比較 4.7.4 圓形複合式混凝土橋柱斷面設計 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻 附表 附圖 附錄A 試體設計

    參考文獻
    【1】 陳生金、鄭明淵、楊國珍,「災時高效率及高經濟型橋梁補強及檢核技術之技術」,交通部公路總局,2004。
    【2】 羅俊雄,「公路橋梁耐震設計規範修訂草案之研究」,交通部,2001。
    【3】 林科銘,「複合式混凝土橋柱之耐震行為」,國立台灣科技大學營建工程系,碩士論文,台北,2004。
    【4】 王智德,「矩形複合式混凝土橋柱之結構行為」,國立台灣科技大學營建工程系,碩士論文,台北,2006。
    【5】 Aboutaha, R.S,「Seismic Resistance of Steel Confined Reinforced Concrete (SCRC) Colunm」,Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA 30332-0355, U.S.A,1997.
    【6】 Aboutaha, R.S.,「Seismic resistance of steel-tubed high-strength reinforced-concrete columns」,Journal of Structural Engineering, v 125, n 5, 1999, p 485-494
    【7】 陳誌良,「鋼管混凝土柱受軸壓與彎矩之行為分析」,成功大學土木工程學系,碩士論文,2002。
    【8】 林草英,「鋼管內填注混凝土柱之軸向承壓強度」,國科會研究報告,1989
    【9】 Boyd, P. F., Cofer, W. F., McLean, D. I., “Seismic performance of steel-encased concrete columns under flexural loading” , ACI Structural Journal, v 92, n 3, May-Jun, 1995, p 355-364.
    【10】 R. S. Aboutaha,「Seismic Retrofit of Non-Ductile Reinforced Concrete Columns Using Rectangular Steel Jackets」, Ph.D. dissertation, University of Texas at Austin, December,1994, p. 373.
    【11】 M. J. Priestley, F. Seible,Y. Xiao and R. Verma, 「Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength—Part 1: Theoretical considerations and test design」, J. American Concrete Institute, 91(4), Detroit, Michigan, 394–405 (July–August 1994).
    【12】 R. S. Aboutaha,「 Rehabilitation of shear critical concrete columns by use of rectangular steel jackets」,ACI Structural Journal, v 96, n 1, Jan-Feb, 1999, p 68-78
    【13】 ATC-40,「Seismic Evaluation and Retrofit of Concrete Buildings」,Volime1,Volume2,California Seismic Safety Commission,1996
    【14】 Mark Aschheim,and Jack P. Moehle, “ Shear Strength and Deformability of RC Bridge Columns Subjected to Inelastic Cyclic Displacements ”, Report No. UCB/EERC-92/04, Earthquake Engineering Research Center ,College of Engineering University of Califormia at Berkeley, 1992.
    【15】 Priestley, M.J. Nigel Verma, Ravindra; Xiao, Yan,「Seismic shear strength of reinforced concrete columns」,Journal of Structural Engineering, v 120, n 8, Aug, 1994, p 2310-2328
    【16】 ACI Committee 318, 「Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318-02)」,American Concrete Institute,Farmington Hills,Michigan,2002
    【17】 柯詩吟,「RC橋柱之鋼板包覆耐震補強」,台灣科技大學營建工程系,碩士論文,台北,June 2001。
    【18】 Mander, J. B. ; Priestley, M. J. N. and Park, R.,「Theroretical Stress-Strain Model for Confined Concret」,Journal of Structural Engineering, v 114, n 8, Aug, 1988, p 1804-1826
    【19】 Hoshikuma, J., et al., Stress-Strain Model for Confined Reinforced Concrete in Bridge Piers, ASCE Journal of Structural Engineering Vol. 123, No.5, May, 1997. (624-633)
    【20】 Stephen Pessiki,and Annette Pieroni (1997),” Axial load behavior of large-scale spirally-reinforced high-strength concrete columns”,ACI Structural Journal ,Vol. 94,No.3,May-June,pp. 304-314.
    【21】 Susantha, K.A.S.,「Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes」,Engineering Structures, v 23, n 10, October, 2001, p 1331-134
    【22】 Mirza, S. A., and J.G. MacGregor. “Variability of Mechanical Properties of Reinforcing Bars.”, Jour. Struct. Div., ASCE, 105(ST5):921-937, May 1979.

    QR CODE