簡易檢索 / 詳目顯示

研究生: 曾國仲
GUO-THONG ZENG
論文名稱: Ka頻帶圓極化摺疊反射陣列天線之研究
Ka-band Circularly Polarized Folded Reflectarray Antenna
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 馬自莊
Tzyh-Ghuang Ma
廖文照
Wen-Jiao Liao
陳晏笙
Yen-Sheng Chen
陳士元
Shih-Yuan Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 摺疊反射陣列天線天線陣列毫米波圓極化圓極化選擇表面
外文關鍵詞: Folded ReflectArray Antenna, Antenna Array, Millimeter Wave, Circular Polarization, Circular Polarization Selective Surface
相關次數: 點閱:350下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主題為圓極化摺疊反射陣列,而在近年為了解決5G網路覆蓋度不足的問題,已計畫使用衛星通訊解決此問題,因此吾人將頻率設計於5G網路內37 GHz,然而在舊有的圓極化摺疊反射陣列設計中,雖然有效能好的研究,但是該架構難以於37 GHz實現,因此吾人將改變其架構,以適用於Ka波段圓極化摺疊反射陣列,吾人之Ka波段圓極化摺疊反射陣列主要分為兩個部分,圓極化選擇表面與圓極化反射陣列。
    吾人之圓極化選擇表面使用吾人所設計的三層介質架構,以解決舊有的圓極化選擇表面架構難以於高頻製造之缺點,也降低架設圓極化選擇表面時的誤差,並在此架構基礎下設計非對稱十字單元,使得圓極化選擇表面反射損失降低。
    而圓極化反射陣列則使用吾人所設計之扇形十字單元,扇形十字單元只使用一層介質,可降低成本以及架構複雜度,並增加一共振環以增加此單元相位可變化之範圍,此款扇形十字單元可變相位範圍大約為500°,並且此架構的反射損失在不同相位時皆可維持於0.5 dB內。
    將圓極化選擇表面與圓極化反射陣列組合為圓極化摺疊反射陣列後,經過量測我們得到此架構之效能為,最高增益26.8 dB和30.6 %的孔徑效率與9.45 %的3-dB增益頻寬,與3-dB軸比頻寬12.2 %。


    The topic of this thesis is the circularly polarized folded reflectarray. In recent years, in order to solve the problem of insufficient 5G network coverage, it has been planned to use satellite communication to solve this problem. Therefore, we designed the frequency at 37 GHz in the 5G network. However, in the old circularly polarized folded reflectarray design, although the effective performance is good, the structure is difficult to achieve at 37 GHz, so we will change its structure to be suitable for Ka-band circularly polarized folded reflect arrays. The Ka-band circularly polarized folded reflectarray is mainly divided into two parts, the circularly polarized selective surface and the circularly polarized reflectarray.
    Our circular polarization selective surface uses the three-layer dielectric structure designed by us to solve the disadvantage that the old circular polarization selective surface structure is difficult to manufacture at high frequencies, and also reduces the error when erecting the circular polarized selective surface. The asymmetric cross element is designed on the basis of this architecture, so that the reflection loss of the circular polarization selective surface is reduced.
    The circularly polarized reflectarray uses the fan-shaped cross unit designed by us. The fan-shaped cross unit only uses one layer of dielectric, which can reduce the cost and the complexity of the structure, and add a resonant ring to increase the range of the phase change of the unit. The variable phase range of the cross unit is about 500°, and the reflection loss of this structure can be maintained within 0.5 dB at different phases.
    After combining the circularly polarized selective surface and the circularly polarized reflectarray into a circularly polarized folded reflectarray, we obtained the performance of this structure by measuring the maximum gain of 26.8 dB, the aperture efficiency of 30.6 % and the 9.45 % 3-dB Gain bandwidth, 12.2 % bandwidth over the 3-dB axis ratio.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 4 1.4 論文組織 4 第二章 圓極化選擇表面之分析 5 2.1 前言 5 2.2 圓極化選擇表面模擬方法 6 2.3 圓極化選擇表面比較 8 2.4 圓極化選擇表面響應分析 19 2.5 結語 31 第三章 圓極化反射陣列設計 32 3.1前言 32 3.2 圓極化反射陣列單元分析及設計 32 3.3 圓極化反射陣列設計流程 42 3.3.1饋入天線選用 43 3.3.2孔徑效率分析 48 3.3.3 單元相位分布計算 51 3.4 結語 54 第四章 圓極化摺疊反射陣列系統整合及驗證 55 4.1 前言 55 4.2 圓極化摺疊反射陣列系統架構設計 55 4.3 圓極化摺疊反射陣列系統實作 58 4.4 圓極化摺疊反射陣列系統驗證 63 4.5 圓極化摺疊反射陣列比較 75 4.6 結語 76 第五章 結論 77 5.1 總結 77 5.2 未來展望 78 參考文獻 79

    [1] J. Huang and R. J. Pogorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," in IEEE Transactions on Antennas and Propagation, vol. 46, no. 5, pp. 650-656, May 1998.
    [2] D. M. Pozar, S. D. Targonski and R. Pokuls, "A shaped-beam microstrip patch reflectarray," in IEEE Transactions on Antennas and Propagation, vol. 47, no. 7, pp. 1167-1173, July 1999.
    [3] J. A. Encinar, "Design of two-layer printed reflectarrays using patches of variable size," in IEEE Transactions on Antennas and Propagation, vol. 49, no. 10, pp. 1403-1410, Oct. 2001.
    [4] Dau-Chyrh Chang and Ming-Chih Huang, "Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization," in IEEE Transactions on Antennas and Propagation, vol. 43, no. 8, pp. 829-834, Aug. 1995.
    [5] R. D. Javor, Xiao-Dong Wu and Kai Chang, "Design and performance of a microstrip reflectarray antenna," in IEEE Transactions on Antennas and Propagation, vol. 43, no. 9, pp. 932-939, Sept. 1995.
    [6] W. Menzel, D. Pilz and M. Al-Tikriti, "Millimeter-wave folded reflector antennas with high gain, low loss, and low profile," in IEEE Antennas and Propagation Magazine, vol. 44, no. 3, pp. 24-29, June 2002.
    [7] D. Berry, R. Malech and W. Kennedy, "The reflectarray antenna," in IEEE Transactions on Antennas and Propagation, vol. 11, no. 6, pp. 645-651, November 1963.
    [8] G. -B. Wu, S. -W. Qu, S. Yang and C. H. Chan, "Low-Cost 1-D Beam-Steering Reflectarray With ±70° Scan Coverage," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 5009-5014, June 2020.
    [9] G. Wu, S. Qu and S. Yang, "Wide-Angle Beam-Scanning Reflectarray With Mechanical Steering," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 1, pp. 172-181, Jan. 2018.
    [10] X. Li et al., "Broadband Electronically Scanned Reflectarray Antenna With Liquid Crystals," in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 3, pp. 396-400, March 2021.
    [11] M. K. T. Al-Nuaimi, A. Mahmoud, W. Hong and Y. He, "Design of Single-Layer Circularly Polarized Reflectarray With Efficient Beam Scanning," in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 6, pp. 1002-1006, June 2020.
    [12] A. Niccolai, M. Beccaria, R. E. Zich, A. Massaccesi and P. Pirinoli, "Social Network Optimization Based Procedure for Beam-Scanning Reflectarray Antenna Design," in IEEE Open Journal of Antennas and Propagation, vol. 1, pp. 500-512, 2020.
    [13] S. Mener, R. Gillard, R. Sauleau, C. Cheymol and P. Potier, "Unit Cell for Reflectarrays Operating With Independent Dual Circular Polarizations," in IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1176-1179, 2014.
    [14] M. -Y. Zhao, G. -Q. Zhang, X. Lei, J. -M. Wu and J. -Y. Shang, "Design of New Single-Layer Multiple-Resonance Broadband Circularly Polarized Reflectarrays," in IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 356-359, 2013.
    [15] Q. Gao, J. Wang, Y. Li and Z. Li, "A Multiresonant Element for Bandwidth Enhancement of Circularly Polarized Reflectarray Antennas," in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 5, pp. 727-730, May 2018.
    [16] R. Deng, Y. Mao, S. Xu and F. Yang, "A Single-Layer Dual-Band Circularly Polarized Reflectarray With High Aperture Efficiency," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp. 3317-3320, July 2015.
    [17] R. S. Malfajani and Z. Atlasbaf, "Design and Implementation of a Broadband Single Layer Circularly Polarized Reflectarray Antenna," in IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 973-976, 2012.
    [18] X. Y. Lei and Y. J. Cheng, "High-Efficiency and High-Polarization Separation Reflectarray Element for OAM-Folded Antenna Application," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1357-1360, 2017.
    [19] M. Jiang, W. Hong, Y. Zhang, S. Yu and H. Zhou, "A Folded Reflectarray Antenna With a Planar SIW Slot Array Antenna as the Primary Source," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 7, pp. 3575-3583, July 2014.
    [20] J. Zhu, Y. Yang, S. Liao and Q. Xue, "Dual-Band Antenna Hybridizing Folded Transmitarray and Folded Reflectarray," in IEEE Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 3070-3075, April 2022.
    [21] X. -C. Zhu, P. -P. Zhang, Y. -X. Zhang, J. -X. Ge and Z. -H. Gao, "A High-Gain Filtering Antenna Based on Folded Reflectarray Antenna and Polarization-Sensitive Frequency Selective Surface," in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 8, pp. 1462-1465, Aug. 2020.
    [22] S. Yang, Z. Yan, M. Cai and X. Li, "Low-Profile Dual-Band Circularly Polarized Antenna Combining Transmitarray and Reflectarray for Satellite Communications," in IEEE Transactions on Antennas and Propagation, vol. 70, no. 7, pp. 5983-5988, July 2022.
    [23] C. Zhang et al., "A Planar Integrated Folded Reflectarray Antenna With Circular Polarization," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 1, pp. 385-390, Jan. 2017.
    [24] Z. -Y. Yu, Y. -H. Zhang, S. -Y. He, H. -T. Gao, H. -T. Chen and G. -Q. Zhu, "A Wide-Angle Coverage and Low Scan Loss Beam Steering Circularly Polarized Folded Reflectarray Antenna for Millimeter-Wave Applications," in IEEE Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 2656-2667, April 2022.
    [25] P. -P. Zhang, X. -C. Zhu, Y. Hu, Z. -C. Hao and G. -Q. Luo, "A Wideband Circularly Polarized Folded Reflectarray Antenna With Linearly Polarized Feed," in IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 5, pp. 913-917, May 2022.
    [26] G. -T. Chen, Y. -C. Jiao, G. Zhao and C. -W. Luo, "Design of Wideband High-Efficiency Circularly Polarized Folded Reflectarray Antenna," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 10, pp. 6988-6993, Oct. 2021.
    [27] J. E. Roy and L. Shafai, "Reciprocal circular-polarization-selective surface," in IEEE Antennas and Propagation Magazine, vol. 38, no. 6, pp. 18-33, Dec. 1996.
    [28] M. Joyal and J. Laurin, "Design and Analysis of a Cascade Circular Polarization Selective Surface at K Band," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3043-3053, June 2014, doi: 10.1109/TAP.2014.
    [29] A. Ericsson and D. Sjöberg, "Design and Analysis of a Multilayer Meander Line Circular Polarization Selective Structure," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4089-4101, Aug. 2017.
    [30] G. A. Morin, "A simple circular polarization selective surface (CPSS)," International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's, 1990.
    [31] I. Tarn and S. Chung, "A New Advance in Circular Polarization Selective Surface—A Three Layered CPSS Without Vertical Conductive Segments," in IEEE Transactions on Antennas and Propagation, vol. 55, no. 2, pp. 460-467, Feb. 2007.
    [32] S. Mener, R. Gillard, R. Sauleau, C. Cheymol and P. Potier, "Design and Characterization of a CPSS-Based Unit-Cell for Circularly Polarized Reflectarray Applications," in IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 2313-2318, April 2013.
    [33] J. Sanz-Fernández, E. Saenz and P. de Maagt, "A Circular Polarization Selective Surface for Space Applications," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 6, pp. 2460-2470, June 2015.
    [34] I. Lopez and J. -J. Laurin, "A Circular Polarization Selective Surface Implemented on a Flexible Substrate," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 7, pp. 3847-3852, July 2014.
    [35] 黃柏霖, 應用於X頻帶之可重構式全金屬反射陣列天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國109.
    [36] Lopez, H. I., “New circular polarization selective surface concepts based on the Pierrot cell using printed circuit technology”, PhDT, 2013.
    [37] M. H. Dahri, M. H. Jamaluddin, M. I. Abbasi and M. R. Kamarudin, "A Review of Wideband Reflectarray Antennas for 5G Communication Systems," in IEEE Access, vol. 5, pp. 17803-17815, 2017.
    [38] P. Nayeri, F. Yang, A. Z. Elsherbeni, Reflectarray Antennas: Theory, Designs, Applications, John Wiley and Sons, 2018.
    [39] R. Vincenti Gatti and R. Rossi, "A Novel Meander-Line Polarizer Modeling Procedure and Broadband Equivalent Circuit," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 11, pp. 6179-6184, Nov. 2017.

    無法下載圖示 全文公開日期 2025/08/22 (校內網路)
    全文公開日期 2032/08/22 (校外網路)
    全文公開日期 2032/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE