簡易檢索 / 詳目顯示

研究生: 棚次亮介
RYOSUKE - TANATSUGU
論文名稱: 合成與鑑定一種包覆阿黴素化療藥物之海藻膠載體粒子與其在體外肝癌細胞模式上的阻殺評估
Preparation, characterization and in vitro cytotoxicity analysis of doxorubicin loaded alginate microparticles on HepG2 hepatic cancer cell line.
指導教授: 郭重顯
Chung-Hsien Kuo
白孟宜
Meng-Yi Bai
口試委員: 李嘉甄
Chia-Chen Li
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 50
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract

    Alginate is a non-toxic, biodegradable, and naturally occurring polysaccharide found in marine brown algae. It has been used in many drug delivery systems for a long history due to its biodegradability and biocompatibility. This study aimed to encapsulate doxorubicin using alginate via electrospray method and assessed the capacity of the encapsulating drug carriers to kill liver cancer cells through cell viability assay. And this particle can also cause embolization in brood vessel at liver cancer site. It will lead the apoptosis of the liver cancer.
    Formulation of alginate-based particles was firstly done using the electrospray method. Preliminary results include encapsulation of stock solution with various pH value, and different applied voltage during electrospray process and addition of CTAB as surfactant to harvest the smaller size and shape of particle.
    Our results showed that the MPs produced from the following condition (flow rate: 4.0 µl/min, WD: 13.0 cm, voltage: 8.0 kV, pH: 7.13, Needle length: 0.6 cm) exhibited smallest size, and was confirmed that DOX is encapsulated in particle. The size is suitable for causing embolization of liver cancer site. MRI test was conducted to confirm whether the contrast agent USPIO is encapsulated in MPs or not and whether the particles can show MRI T2 effect when using as contrast agent. Ethylene glycol was used to disperse the MPs to prevent precipitation during acquisition procedure of MRI imaging. As a result, the USPIO in the MPs was confirmed through this test and indeed showed T2 effect in MRI imaging. By using SEM, the precise morphology of surface of the MPs was observed. The cytotoxicity of the doxorubicin encapsulating MPs to liver cancer cell HepG2 was via MTT assay. During this assay, the cells were incubated at 37℃, 5% CO2 condition. At point of 1 mM doxorubicin concentration, MPs suspended with DI water/ethylene glycol cosolvent showed inhibition rate of approximately 65% and 89% to hepatic cancer cell line HepG2, respectively.

    Table of Contents Abstract 1 Introduction 3 1.1 Background 3 1.1.1 Liver cancer 6 1.1.2 Chemoembolization for liver cancer 6 1.1.3 Anti-cancer drug 8 1.1.4 Biomaterials used 12 1.1.5 MRI contrast agents 14 1.1.6 MTT assay 14 1.1.7 Literature review for the current status of relevant research 16 1.2 Aims and goal 16 Materials and methods 18 2.1 Materials and instruments 18 2.2 Cell experiment 21 2.3 MRI study 22 2.4 MTT cell viability assay 24 Results and Discussion 26 3.1 Analysis of DOX-SPIO/ALG MPs 26 3.2 MRI test 32 3.3 Surface morphology characterization using SEM 35 3.4 MTT assay 36 Conclusion 39 References 41

    References

    [1] Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nano 2007, 2 (12), 751−60.
    [2] Kumar, A.; Chen, F.; Mozhi, A.; Zhang, X.; Zhao, Y.; Xue, X.; Hao, Y.; Zhang, X.; Wang, P. C.; Liang, X. J. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013, 5 (18), 8307−25.
    [3] Wagner, S.; Rothweiler, F.; Anhorn, M. G.; Sauer, D.; Riemann, I.; Weiss, E. C.; Katsen-Globa, A.; Michaelis, M.; Cinatl, J., Jr.; Schwartz, D.; Kreuter, J.; von Briesen, H.; Langer, K. Enhanced drug targeting by attachment of an anti alphav integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials 2010, 31 (8), 2388−98.
    [4] Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer Res. 2008, 14 (5), 1310−6.
    [5] R.R. Patil, S.A. Guhagarkar, P.V. Devarajan Engineered nanocarriers of doxorubicin: a current update Crit. Rev. Ther. Drug Carrier Syst., 25 (2008), pp. 1–61
    [6] S.A. Guhagarkar, R.V. Gaikwad, A. Samad, V.C. Malshe, P.V. Devarajan
    Polyethylene sebacate–doxorubicin nanoparticles for hepatic targeting Int. J. Pharm., 401 (2010), pp. 113–122
    [7] M. Hruby, C. Konak, K. Ulbrich Polymer micellar pH-sensitive drug delivery system for doxorubicin J. Control. Release, 103 (2005), pp. 137–148
    [8] Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TAT, Zakaria ZAB. In vitro delivery and controlled release of doxorubicin for targeting osteosarcoma bone cancer. Molecules, 2013; 18: 10580-10598. doi:10.3390/molecules180910580 molecules.
    [9] Khemani M, Sharon M, Sharon M. pH dependent encapsulation of doxorubicin in PLGA. Ann Biol Res, 2012; 3(9): 4414-4419.
    [10] Ahmad Z, Pandey R, Sharma S, Khuller G. Alginate nanoparticles as antituberculosis drug carrier: Formulation, development, pharmacokinetics, and therapeutic potential. Ches Dis Allied Sciences, 2005; 48: 171-176.
    [11] S. Vinchon-Petit, D. Jarnet, S. Michalak, A. Lewis, J.P. Benoit, P. Menei
    Local implantation of doxorubicin drug eluting beads in rat glioma
    Int. J. Pharm, 402 (2010), pp. 184–189
    [12] Z. Liu, R. Cheung, X.Y. Wu, J.R. Ballinger, R. Bendayan, A.M. Rauth
    A study of doxorubicin loading onto and release from sulfopropyl dextran ion-exchange microspheres J. Control. Release, 77 (2001), pp. 213–224
    [13] E.C. Tan, R. Lin, C.H. Wang
    Fabrication of double-walled microspheres for the sustained release of doxorubicin J. Colloid Interface Sci., 291 (2005), pp. 135–143
    [14] H.S. Kim, I.W. Wainer Simultaneous analysis of liposomal doxorubicin and doxorubicin using capillary electrophoresis and laser induced fluorescence J. Pharm. Biomed. Anal., 52 (2010), pp. 372–376
    [15] T.H. Kim, C.W. Mount, W.R. Gombotz, S.H. Pun
    The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles
    Biomaterials, 31 (2010), pp. 7386–7397
    [16] Y.Q. Ye, F.L. Yang, F.Q. Hu, Y.Z. Du, H. Yuan, H.Y. Yu
    Core-modified chitosanbased polymeric micelles for controlled release of doxorubicin Int. J. Pharm., 352 (2008), pp. 294–301
    [17] J. Qia, P. Yao, F. Heb, C. Yub, C. Huang Nanoparticles with dextran/chitosan shell and BSA/chitosan core—doxorubicin loading and delivery
    [18] S. Dreis, F. Rothweiler, M. Michaelis, Jr. Cinatl, J. Kreuter, K. Langer
    Preparation, characterization and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles [R] Smrdel P, Bogataj M, Mrhar A. The influence of selected parameters on the size and shape of alginate beads prepared by ionotropic gelation. Sci Pharm, 2008; 76: 77-89. doi:10.3797/scipharm.0611-07.
    [19] Smrdel P, Bogataj M, Mrhar A. The influence of selected parameters on the size and shape of alginate beads prepared by ionotropic gelation. Sci Pharm, 2008; 76: 77-89. doi:10.3797/scipharm.0611-07.
    [20] Bajpai SK, Sharma, S. Investigation of swelling/degradation behavior of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym, 2004; 59: 129-140.
    [21] T.L. Bowersock, H. HogenEsch, M. Suckow, R.E. Porter, R. Jackson , K. Park
    Oral vaccination with alginate microsphere systems J. Control. Release, 39 (1996), pp. 209–220
    [22] B. Thu, P. Bruheim, T. Espevik, O. SmidsrØd, P. Soon-Shiong, G. Skjaệk-Brñk
    Alginate polycation microcapsules I. Interaction between alginate and polycation Biomaterials, 17 (1996), pp. 1031–1040
    [23] A.J. Rebeiro, R.J. Neufeld, A. Philippe, J.C. Chaumeil Microencapsulation of lipophilic drugs in chitosan-coated alginate microspheres Int. J. Pharm., 187 (1999), pp. 115–123
    [24] B. Sarmento, A. Ribeiro, F. Veiga, R. Neufeld, D. Ferreira
    Insulin-loaded alginate/chitosan nanoparticles produced by ionotropic pre-gelation Rev. Port. Farmá cia, 2 (2005), pp. 139–140
    [25] C. Ouwerx, N.M. Velings, M.M. Mestdagh, M.A.V. Axelos Physico-chemical properties and rheology of alginate gel beads formed with divalent cations
    Polym. Gels Networks, 6 (1998), pp. 393–408
    [26] Kim et al., 2009, Lavasanifar and Xiong, 2011, Quan et al., 2009 and Tsai et al., 2010
    [27] Chen et al., 2011b, Lowery et al., 2011, Ma et al., 2010, Xiong et al., 2011 and Zhang et al., 2012
    [28] Chung et al., 2000, Du et al., 2011, Lee and Kataoka, 2009, Xu et al., 2009 and Zhang et al., 2004
    [29] C. Kumar,“Nanomaterials for Cancer Therapy”,1st edition, Wiley-Vch Verlag Gmbh & Co. KgaA 2006.
    [30] "Technique Streamlines Search for Anticancer Drugs." Cancer Weekly April 15, 2003: 62
    [31] Fumino Watari. Biointeractive and Bioreactive Nature of Nanomaterials. Watari, Nanomedicine1(1),2-8, 2009.
    [32] Daniel S. Kohane. Microparticles and nanoparticles for drug delivery. Biotechnology and Bioengineering. 26 December 2006.
    [33] M.N. Singh, K.S.Y. Hemant,* M. Ram, and H.G. Shivakumar. Microencapsulation: A promising technique for controlled drug delivery. Res Pharm Sci. 2010 Jul-Dec; 5(2): 65–77.
    [34] Wei Zang, Li-Hua Xie, Bao-Hua Zhu, Da-Wei Cui. Construction of human HepG-2 cells infected by lentivirus carrying green fluorescent protein gene. Int J Clin Exp Med 2016;9(5):8161-8168.
    [35] A.A. Stepanenko, , V.V. Dmitrenko. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene Volume 574, Issue 2, 15 December 2015, Pages 193–203

    無法下載圖示 全文公開日期 2022/02/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE