簡易檢索 / 詳目顯示

研究生: 林利臻
Li-Chen Lin
論文名稱: 基於FPGA軌跡規劃與追蹤控制及應用於影像繪圖之移動機器人
Trajectory Planning and Tracking Control of a FPGA-based Mobile Robot in a Picture Drawing Application
指導教授: 施慶隆
Ching-Long Shih
口試委員: 李文猶
黃騰毅
Teng-Yi Huang
陳雅淑
Ya-Shu Chen
施慶隆
Ching-Long Shih
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 移動機器人里程計FPGA軌跡搜尋追蹤控制影像繪圖
外文關鍵詞: mobile robot, odometer, FPGA, trajectory searching, trajectory tracking, image drawing
相關次數: 點閱:328下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文實現移動式繪圖機器人系統,它能使拍攝的影像即時的繪製於紙上。本系統包含主控端控制器及移動機器人兩個子系統,分別使用C語言及Verilog語言撰寫控制程式。主控端系統將影像中的特徵點分類為不同的線段,接著搜尋排序移動距離較小的線段並簡化該線段控制點個數,最後經由藍芽無線傳送所規劃的線段資訊至移動機器人。主控端系統共進行三次搜尋並分類特徵點可減少分類後的線段個數,提升繪圖的效率。移動機器人系統以FPGA發展控制器使用精準的線性差分驅動,兩組位置閉迴路控制器即時追蹤主控制器端傳送的參考軌跡資料,同時控制筆架機構提放筆,繪出所拍攝的影像縮影。本文提出放置筆尖在兩輪連線是垂直平分線上的位置,實現簡單且有效的全方位式的軌跡控制方式。


This thesis implements an autonomous drawing mobile robot system which can plot the captured picture on a paper in real-time. The system consists of two subsystems: the master controller and the mobile robot control system, which are programming by C and Verilog, respectively. The master controller first captures the image and classifies its feature points into connected pixels. Next, the master controller simplifies the connected pixels into line segments of control points and then sorts the plotting order in terms of shorter moving distance. Finally, the master controller sends the planed linear trajectory information to the mobile robot control system by Bluetooth. In this subsystem, we propose a three-pass searching algorithm to classify feature points. This algorithm can reduce number of control points of a connected line and improve drawing efficiency. The second subsystem of the system is an accurate differential drive mobile robot controlled by FPGA controller. The mobile robot tracks reference trajectory real-time by using position closed-loop controller and simultaneously control penholder mechanism to draw the picture. In this work, we propose a method by locating the tip of the pen at a perpendicular line to the middle between two wheels. Thus an omnidirectional mobile robot can be constructed, so that a simple and effective mobile robot trajectory control method can be implemented easily.

目錄 誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與動機 1 1.3 文獻回顧 2 1.4 論文大綱 3 第二章 移動機器人系統架構 4 2.1 系統簡介 4 2.2 移動機器人硬體介紹 6 2.2.1 FPGA開發板 6 2.2.2 直流馬達及驅動模組 7 2.2.3 步進馬達及驅動模組 8 2.2.4 HC-05藍芽模組 8 2.2.5 筆架設計架構 8 2.2.6 驅動輪外框設計架構 10 第三章 影像處理與圖點分類 11 3.1 影像處理 12 3.1.1 影像擷取 12 3.1.2 影像特徵邊緣偵測 13 3.1.3 影像混合線性轉換 19 3.2 圖點分類 19 3.2.1 分類基本線段 22 3.2.2 分類遺漏線段 24 3.2.3 分類閉鎖圓圈 25 第四章 軌跡規畫與資料傳送 26 4.1 線段排序 26 4.2 軌跡簡化 27 4.2.1 合併與分割簡化法 27 4.2.2 道格拉斯線段簡化法 29 4.3 資料傳輸格式 31 第五章 移動機器人控制軟體設計 36 5.1 命令接收與暫存模組 37 5.2 命令處理模組 39 5.2.1 移動機器人里程計 40 5.2.2 移動機器人軌跡追蹤控制 42 5.3 馬達控制模組 46 5.3.1 直流馬達閉迴路位置控制 46 5.3.2 步進馬達閉迴路位置控制 48 第六章 實驗結果與討論 50 6.1 筆架位置對繪圖的影響 50 6.2 軌跡簡化的影響 51 6.3 實際移動軌跡與里程計計算之誤差 53 6.4 完整影像實際繪圖結果 57 6.5 軌跡控制數學模型討論 61 第七章 結論與建議 62 7.1 結論 62 7.2 建議 63 參考文獻 64

[1] Canny, J.F. A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 1986, 8, pp. 679-698.
[2] Gonzalez, R.C. and Woods, R.E. Digital image processing, 3rd edition, Prentice- Hall, Upper Saddle River, NJ, USA, 2006. pp. 707-713.
[3] Canny, J.F. Finding edges and lines in images, MIT Artificial Intelligence Lab., Cambridge, MA, TR-720, 1983.
[4] Cormen, T.H.; Leiserson, C.E.; Rivest R.L. and Stein C. Introduction to algorithms, 3rd edition, The MIT Press, Cambridge, Massachusetts, London, England, 2009.
[5] Malik, A.; Sharma, A. and Saroha V. Greedy algorithm, International Journal of Scientific and Research Publications, vol. 3, no. 8, 2013
[6] Douglas, D.H. and Thomas K. Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, The Canadian Cartographer 1973, 10, pp. 112–122.
[7] Hawayek, S.; Hargrove, C. and BouSaba, N. A. Real-time bluetooth communication between an FPGA based embedded system and an Android phone, 2013 Proceedings of IEEE Southeastcon, Jacksonville, FL, 2013, pp. 1-4.
[8] Weihua, C. and Tie, Z. An indoor mobile robot navigation technique using odometry and electronic compass, International journal of advanced robotic systems, vol. 14, no. 3, 2017.
[9] Abedini, S. and Zarabadipour, H. Tuning of an optimal PID controller with iterative feedback tuning method for DC motor, The 2nd International Conference on Control, Instrumentation and Automation, Shiraz, 2011, pp. 611-615.
[10] Li, J.; Fang, J.; Li, B. and Zhao, Y. Study of CORDIC algorithm based on FPGA, 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, 2016, pp. 4338-4343.
[11] Kotani, S.; Yasutomi, S.; Kin, X.; Mori, H.; Shigihara, S. and Matsumuro, Y. Image processing and motion control of a lane mark drawing robot, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, 1993, pp. 1035-1041.
[12] Srikaew, A.; Cambron, M.; Northrup, S.; Peters II, R.A.; Wilkes, M. and Kawamura, K. Humanoid drawing robot, IASTED International Conference on Robotics and Manufacturing, Banff, Canada, July 1998.
[13] Lau, M.C.; Baltes, J.; Anderson, J. and Durocher, S. A portrait drawing robot using a geometric graph approach: Furthest Neighbour Theta-graphs, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kachsiung, 2012, pp. 75-79.
[14] Tresset P. and Leymarie, F. F. Portrait drawing by Paul the robot, Computers & Graphics 2013, 37, pp. 348-363.
[15] Jain, S.; Gupta, P.; Kumar, V. and Sharma, K, A force-controlled portrait drawing robot, IEEE International Conference on Industrial Technology (ICIT), Seville, 2015, pp. 3160-3165.
[16] Kanayama, Y.; Kimura, Y.; Miyazaki, F. and Noguchi, T. A stable tracking control method for an autonomous mobile robot, IEEE International Conference on Robotics and Automation, Cincinnati, OH, 1990, pp. 384-389.
[17] Samson, C. Control of chained systems application to path following and time-varying point-stabilization of mobile robots, IEEE Transactions on Automatic Control 1995, 40, pp. 64-77.
[18] Egerstedt, M.; Hu, X. and Stotsky, A. Control of mobile platforms using a virtual vehicle approach, IEEE Transactions on Automatic Control 2001, 46, pp. 1777-1782.
[19] Saha, S.K.; Angeles J. and Darcovich, J. The kinematic design of a 3-DOF isotropic mobile robot, Proceedings IEEE International Conference on Robotics and Automation, Atlanta, GA, 1993, pp. 283-288.
[20] Togai, M. An application of singular value decomposition to manipulability and sensitivity of industrial robots, SIAM Journal on Algebraic and Discrete Methods 1986, 7, pp. 315-320.
[21] Merlet, J.P. Jacobian, manipulability, condition number and accuracy of parallel robots, ASME Journal of Mechanical Design. 2006, 128, pp. 199-206.
[22] Khalil, H.K. Nonlinear systems, 3rd edition, Prentice-Hall, NJ, USA, 2002.
[23] 施慶隆、李文猶,機電整合與控制—多軸運動設計與應用,第三版,全華書局股份有限公司,2015。

QR CODE