簡易檢索 / 詳目顯示

研究生: 楊淯凱
Yu-kai Yang
論文名稱: 以積層製造技術光固化PCL-PEG-diacrylate之材料性質與組織工程支架成型性探討
Study on Material Properties and Tissue Engineering Scaffold Fabrication Capability of Photo-cured PCL with PEG-diacrylate by Additive Manufacturing Technique
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 楊銘乾
Ming-Chien Yang
白孟宜
Meng-Yi Bai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 144
中文關鍵詞: 積層製造PCLPEG-diacrylate支架L929細胞
外文關鍵詞: Additive Manufacturing, PCL, PEG-diacrylate, scaffold, L929
相關次數: 點閱:462下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今的積層製造技術(AM)已被應用於組織工程支架的製作,並去解決像是傳統方法上的孔洞控制與幾何圖形問題,大部分積層製造都是以擠出或者是燒結的方式,很少使用光固化成型,在實驗室先前研究中利用光固化PCL材料(PCL-DA)結合PEG-diacrylate(PEG-DA)並藉由動態光罩快速成型系統進行光固化,但是在材料特性上還沒完全被釐清。此外,材料堆疊層數的製作被侷限於過固化問題產生,因此本研究目的在於材料性質探討並對過固化問題進行成型性改善。
在PCL-DA+PEG-DA三種比例(6:4、7:3、8:2)的探討,利用熱分析儀器(TMA、DSC和TGA)來計算熱膨脹係數與了解熱穩定性,從60天的降解試驗中得知重量損失率與pH值,並以PCL-DA+PEG-DA薄膜的方式來進行纖維母細胞L929的體外培養,其結果可從SEM的觀察與MTT測試來證明細胞貼附與成長狀況。此外,為了改善支架製作上的成型性,提出了兩大策略來解決因材料透明而導致過固化問題─多元圖形支架幾何設計與材料染色。在多元圖形支架設計上,孔洞的多元性與連通性是有利提供細胞成長,但在過固化的影響上是被侷限的。另一方面,染色材料可以有效地阻擋光源避免支架發生過固化,支架的堆疊層數上可以從原本的八層堆疊到二十層或更多,在支架製作上已經成功的改善其成型性。


Additive Manufacturing (AM) technologies have been applied to fabricate tissue engineering scaffolds nowadays to solve issues such as pore-size control and geometry shapes in traditional methods. Most AM approaches utilize extrusion or sintering, yet few by photo-curing. In the previous research in our lab, preliminary study on photo-curable PCL material (PCL-DA) combining with PEG-diacrylate (PEG-DA) cured by Dynamic Masking Rapid Prototyping System was conducted, but material properties are not well understood. Besides, the over-curing issue of the material limited the number of layers being fabricated. Therefore, in this research, more material properties were investigated, and fabrication capability were improved.
Three ratios (6:4, 7:3, 8:2) of PCL-DA to PEG-DA were studied. Thermal analyzer equipments (TMA, DSC, and TGA) were used to determine the coefficient of thermal expansion of the materials and understand their thermal stability. Degradation tests revealed weight loss and pH value of materials within 60 days. Moreover, the L929 cells were cultures in vitro on the cured PCL-DA/PEG-DA thin-film to observe biocompatibility. The results from SEM observation and MTT tests proved cell adhesion and growth on the cured materials. Besides, in order to improve scaffold fabrication capability, two strategies were proposed to eliminate over-curing issue of transparent materials—multi-pattern geometry design and dyed materials. The multi-pattern design can provide various sizes of connecting pores for cells growth, but the effects on avoiding over-curing is limited. On the other hand, dyed materials can block the light to over-cure previously cured layers effectively and increase the stackable numbers of layers from 8 to 20 and more. The scaffold fabrication capability has successfully been improved.

摘要 ABSTRACT 致謝 縮寫表(ABBREVIATIONS) 目錄 圖目錄 第一章 緒論 1.1 前言 1.2 研究背景與動機 1.3 研究目的與方法 1.4 論文架構 第二章 文獻探討 2.1 組織工程(TISSUE ENGINEERING)介紹 2.1.1 支架材料之特性 2.1.2 高分子生醫材料 2.1.3 傳統支架製備方法 2.2 應用積層製造技術製造組織工程支架 2.2.1 積層製造加工原理 2.2.2 積層製造技術應用於組織工程支架之製造 第三章 材料合成與系統介紹 3.1 實驗藥品與設備 3.2 材料系統介紹與合成系統改善 3.2.1 光聚合生醫材料 3.2.2 光交聯劑 3.2.3 TPO光啟始劑 3.2.4 合成PCL-DA 3.2.5 除水系統之改善 3.3 生醫動態光罩快速成型系統 3.3.1 光罩系統優勢與差別 3.3.2 下照式動態光罩快速成型系統 3.3.3 動態光罩控制軟體 3.3.4 動態光罩產生器 第四章 材料檢測與細胞培養結果 4.1 實驗藥品與設備 4.2 設備之簡介紹 4.2.1 熱機械分析儀(TMA) 4.2.2 熱重量分析儀(TGA) 4.2.3 熱示差掃描分析儀(DSC) 4.2.4 傅立葉轉換紅外線光譜儀(FTIR) 4.3 材料鑑定與性質檢測結果 4.3.1 熱機械分析測試 4.3.2 熱重量分析測試 4.3.3 熱示差掃描測試 4.3.4 傅立葉轉換紅外線光譜儀測試 4.3.5 PCL-DA+PEG-DA之靜態降解 4.4 細胞培養與生物相容性檢測 4.4.1 細胞培養生長情況 4.4.2 細胞培養結果 4.4.3 生物毒性測試 4.4.4 掃描式電子顯微鏡(SEM)觀察 第五章 改善支架成型性 5.1 3D多元形狀支架 5.1.1 多元圖形設計與測試 5.1.2 3D多元支架建構 5.2 支架疊層與精度改良 5.2.1 材料染色 5.2.2 染色材料製作支架測試 5.2.3 天然染料探討 第六章 結論與未來研究方向 6.1 結論 6.2 未來展望

【1】 http://textile.iitd.ac.in/highlights/fol8/01.htm.
【2】 Hutmacher, D.W., and Garcia, A.J. (2005). Scaffold-based bone
engineering by using genetically modified cells. Gene 347, 1-10.
【3】 楊婷琪 (2002). 組織工程的重要元件-生物分子. 工研院經貿
中心生醫組.
【4】 廖俊仁 (2002). 組織工程用多孔隙骨架材料. 工研院生醫工
程中心.
【5】 Yang, S., Leong, K.F., Du, Z., and Chua, C.K. (2001). The design
of scaffolds for use in tissue engineering. Part I. Traditional
factors. Tissue Engineering 7, 679-689.
【6】 俞耀庭 (2004). 生物醫用材料. 新文京.
【7】 Reed, A.M., and Gilding, D.K. (1981). Biodegradable polymers
for use in surgery — poly(glycolic)/poly(Iactic acid) homo and
copolymers: 2. In vitro degradation. Polymer 22, 494-498.
【8】 生醫材料與組織工程. 工業技術研究院.
【9】 張根源 (2001年2月). 生物吸收性PLGA材料合成與應用技
術. 工業技術與資訊 112.
【10】 http://www.bio-invigor.com. 興技生物科技公司.
【11】 蔡秉宏 (1999). 以聚殼醣合成光交聯性衍生物之探討. 國立
成功大學化學工程研究所 碩士論文.

【12】 D.S (1994). Medical application of synthetic polymers. Marcel
Dekker NewYork.
【13】 J. S. Park , D.G.W., Bo Kyung Sun (2007). In vitro and in vivo
test of PEG/PCL-based hydrogel scaffold for cell delivery
application. Journal of Controlled Release 124, 51–59.
【14】 許芳豪 (2006). 以快速原型技術研究組織工程支架孔徑大小
對細胞成長之影響. 國立台灣科技大學機械工程研究所 碩
士論文.
【15】 Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee,
H.-S., Oh, J.-S., Akaike, T., and Cho, C.-S. (2003). A novel
degradable polycaprolactone networks for tissue engineering.
Biomaterials 24, 801-808.
【16】 Chung, T.-W., Yang, M.-C., Tseng, C.-C., Sheu, S.-H., Wang,
S.-S., Huang, Y.-Y., and Chen, S.-D. (2011). Promoting
regeneration of peripheral nerves in-vivo using new
PCL-NGF/Tirofiban nerve conduits. Biomaterials 32, 734-743.
【17】 Bian, Y.-Z., Wang, Y., Aibaidoula, G., Chen, G.-Q., and Wu, Q.
(2009). Evaluation of
poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for
peripheral nerve regeneration. Biomaterials 30, 217-225.
【18】 Whang, K., Thomas, C.H., Healy, K.E., and Nuber, G. (1995). A
novel method to fabricate bioabsorbable scaffolds. Polymer 36,
837-842.
【19】 Wei, G., and Ma, P.X. (2004). Structure and properties of
nano-hydroxyapatite/polymer composite scaffolds for bone
tissue engineering. Biomaterials 25, 4749-4757.
【20】 Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., and Cheng, L. (2007).
Biocompatibility and osteogenesis of biomimetic
nano-hydroxyapatite/polyamide composite scaffolds for bone
tissue engineering. Biomaterials 28, 3338-3348.
【21】 俞耀庭 (2004). 生物醫用材料. 初版 新文京.
【22】 Yucel, D., Kose, G.T., and Hasirci, V. (2010). Polyester based
nerve guidance conduit design. Biomaterials 31, 1596-1603.
【23】 Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M.,
Nasr-Esfahani, M.H., and Ramakrishna, S. (2010).
Bio-functionalized PCL nanofibrous scaffolds for nerve tissue
engineering. Materials Science and Engineering: C 30,
1129-1136.
【24】 M. S. Widmer, P.K.G., L. Lu, R. K. Meszlenyi ,G. R. Evans, K.
Brandt, T. Savel, A. Gurlek, C. W. Patrick Jr. and A. G. Mikos
(1998). Manufacture of porous biodegradable polymer conduits
by an extrusion process for guided tissue regeneration.
Biomaterials 19, 1945-1955.

【25】 Moore, M.J., Friedman, J.A., Lewellyn, E.B., Mantila, S.M.,
Krych, A.J., Ameenuddin, S., Knight, A.M., Lu, L., Currier, B.L.,
Spinner, R.J., et al. (2006). Multiple-channel scaffolds to
promote spinal cord axon regeneration. Biomaterials 27, 419-429.
【26】 Gebhardt, A. (June 2003). Rapid Prototyping. Hanser Gardner
Publications 1, 31.
【27】 http://www.custompartnet.com/.
【28】 K.F. Leong, C.M.C., C.K. Chua (2003). Solid freeform
fabrication of 3D scaffolds for engineering replacement tissue
and organs. Biomaterials 24, 2363–2378.
【29】 Mondrinos, M.J., Dembzynski, R., Lu, L., Byrapogu, V.K.C.,
Wootton, D.M., Lelkes, P.I., and Zhou, J. (2006). Porogen-based
solid freeform fabrication of polycaprolactone–calcium
phosphate scaffolds for tissue engineering. Biomaterials 27,
4399-4408.
【30】 Khalil, S., and Sun, W. (2007). Biopolymer deposition for
freeform fabrication of hydrogel tissue constructs. Materials
Science and Engineering: C 27, 469-478.
【31】 Shor, L., Guceri, S., Wen, X., Gandhi, M., and Sun, W. (2007).
Fabrication of three-dimensional polycaprolactone/hydroxyapatite
tissue scaffolds and osteoblast-scaffold interactions in vitro.
Biomaterials 28, 5291-5297.

【32】 W. Zeng, F.L., T. Shi, R. Zhang,Y. Nian, J. Ruan, T. Zhou (2008).
Fused deposition modelling of an auricle framework for microtia
reconstruction based on CT images. 14/5, 280–284.
【33】 T. Cui, Y.Y., R. Zhang ( 2009). Rapid Prototyping of a
Double-Layer Polyurethane–Collagen Conduit for Peripheral
Nerve Regeneration. Journal of Bioactive and Compatible
Polymers 24, 5-17.
【34】 Shim, J.H.K., A. J.Park, J. Y.Yi, N.Kang, I.Park, J.Rhie, J.W.Cho,
D. W (April 2013). Effect of solid freeform
fabrication-basedpolycaprolactone/poly(lactic-co-glycolic
acid)/collagen scaffolds on cellular activities of human
adipose-derived stem cells and rat primary hepatocytes. Journal
of Materials Science: Materials in Medicine 24, 1053-1065.
【35】 Kim, J.Y., and Cho, D.-W. (2009). Blended PCL/PLGA scaffold
fabrication using multi-head deposition system. Microelectronic
Engineering 86, 1447-1450.
【36】 Domingos, M., Intranuovo, F., Gloria, A., Gristina, R., Ambrosio,
L., Bartolo, P.J., and Favia, P. (2013). Improved osteoblast cell
affinity on plasma-modified 3-D extruded PCL scaffolds. Acta
biomaterialia 9, 5997-6005.
【37】 http://www.azom.com/article.aspx?ArticleID=1648.

【38】Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L.,
Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., and Das, S. (2005).
Bone tissue engineering using polycaprolactone scaffolds
fabricated via selective laser sintering. Biomaterials 26, 4817-4827.
【39】 M M Savalani, L.H., Y Zhang, K E Tanner, R A Harris (2007).
Fabrication of porous bioactive structures using the selective laser
sintering technique. Proceedings of The Institution of Mechanical
Engineers Part H-journal of Engineering in Medicine 221, 873-886.
【40】 Mangano, C., De Rosa, A., Desiderio, V., d'Aquino, R., Piattelli,
A., De Francesco, F., Tirino, V., Mangano, F., and Papaccio, G.
(2010). The osteoblastic differentiation of dental pulp stem cells
and bone formation on different titanium surface textures.
Biomaterials 31, 3543-3551.
【41】 Eshraghi, S., and Das, S. (2012). Micromechanical finite-element
modeling and experimental characterization of the compressive
mechanical properties of polycaprolactone–hydroxyapatite
composite scaffolds prepared by selective laser sintering for bone
tissue engineering. Acta biomaterialia 8, 3138-3143.
【42】 Van Bael, S., Desmet, T., Chai, Y.C., Pyka, G., Dubruel, P.,
Kruth, J.-P., and Schrooten, J. (2013). In vitro cell-biological
performance and structural characterization of selective laser
sintered and plasma surface functionalized polycaprolactone
scaffolds for bone regeneration. Materials Science and
Engineering: C 33, 3404-3412.
【43】 Lee, M., Dunn, J.C.Y., and Wu, B.M. (2005). Scaffold
fabrication by indirect three-dimensional printing. Biomaterials
26, 4281-4289.
【44】 Macdonald, M.L., Samuel, R.E., Shah, N.J., Padera, R.F., Beben,
Y.M., and Hammond, P.T. (2011). Tissue integration of growth
factor-eluting layer-by-layer polyelectrolyte multilayer coated
implants. Biomaterials 32, 1446-1453.
【45】 Tarafder, S., Neal M.Bandyopadhyay, Amit Bose, Susmita
(2013). 3D printed tricalcium phosphate bone tissue engineering
scaffolds: effect of SrO and MgO doping on in vivo osteogenesis
in a rat distal femoral defect model. Biomaterials Science 1, 1250.
【46】 Jiankang, H., Dichen, L., Yaxiong, L., Bo, Y., Bingheng, L., and
Qin, L. (2007). Fabrication and characterization of
chitosan/gelatin porous scaffolds with predefined internal
microstructures. Polymer 48, 4578-4588.
【47】 Melchels, F.P.W., Feijen, J., and Grijpma, D.W. (2009). A
poly(d,l-lactide) resin for the preparation of tissue engineering
scaffolds by stereolithography. Biomaterials 30, 3801-3809.

【48】 Choi, J.-W., Wicker, R., Lee, S.-H., Choi, K.-H., Ha, C.-S., and
Chung, I. (2009). Fabrication of 3D biocompatible/biodegradable
micro-scaffolds using dynamic mask projection
microstereolithography. Journal of Materials Processing
Technology 209, 5494-5503.
【49】 Elomaa, L., Teixeira, S., Hakala, R., Korhonen, H., Grijpma,
D.W., and Seppala, J.V. (2011). Preparation of
poly(epsilon-caprolactone)-based tissue engineering scaffolds by
stereolithography. Acta biomaterialia 7, 3850-3856.
【50】 李孟龍 (2005). 動態光罩快速原型系統製造組織工程支架之
研發. 國立台灣科技大學機械工程研究所 碩士論文.
【51】 陳俊豪 (2006). 光固化快速成型技術製作組織工程支架之研
究. 國立台灣科技大學機械工程研究所 碩士論文.
【52】 許貽玨 (2007). 光聚合生物可分解材料應用於RP技術製作
組織工程支架性質之研究. 國立台灣科技大學機械工程研究
所 碩士論文.
【53】 陳茂揚 (2008). 光固化快速成型系統製作3D組織工程支架.
國立台灣科技大學機械工程研究所 碩士論文.
【54】 曾俊元 (2008). 動態光罩快速成型系統光聚合
PCL-PEG-PCL製作3D組織工程支架. 國立台灣科技大學機
械工程研究所 碩士論文.

【55】 薛智仁 (2009). 動態光罩快速成型系統製作3D PCL管狀多
孔性組織工程支架之研究. 國立台灣科技大學機械工程研究
所 碩士論文.
【56】 謝浚雄 (2011). 光聚合PCL材料系統成份探討及其應用於快
速成型3D組織工程支架. 國立台灣科技大學機械工程研究
所 碩士論文.
【57】 孫凱閔 (2011). PCL結合PEG-acrylate透過動態光罩成型系統
製作3D多孔性組織工程支架. 國立台灣科技大學機械工程
研究所 碩士論文.
【58】 侯佳延 (2012). PCL結合PEG-diacrylate透過反射式動態光罩
成型系統製作3D多孔性組織工程支架. 國立台灣科技大學
機械工程研究所 碩士論文.
【59】 Grinstaff, M.W., et al (2001). Photocrosslinkable polymers for
biomedical applications. Abstracts of Paper of the American
Chemical Society 222, U249-U249.
【60】 Bryant, G.D.N.a.S.J. (June 2008). Cell Encapsulation in
Biodegradable Hydrogels for Tissue Engineering Applications.
Tissue Engineering Part B: Reviews 14, 149-165.
【61】 Decker, C. (2002). Kinetic Study and New Applications of UV
Radiation Curing. Macromolecular Rapid Communication 23,
1067-1093.
【62】 http://www.sigmaaldrich.com/taiwan.html. sigmaaldrich.
【63】 http://www.dlp.com/tw/. Texas Instrument.
【64】http://postfiles5.naver.net/data42/2009/1/8/100/noname02_toy327
6.jpg?type=w3.
【65】 http://www.vivitekusa.com/ Viviteck.
【66】 Tang, Z.G., Callaghan, J.T., and Hunt, J.A. (2005). The physical
properties and response of osteoblasts to solution cast films of
PLGA doped polycaprolactone. Biomaterials 26, 6618-6624.
【67】 Cheng, Z., and Teoh, S.-H. (2004). Surface modification of ultra
thin poly (ε-caprolactone) films using acrylic acid and collagen.
Biomaterials 25, 1991-2001.
【68】 Paik, Y.-S., Lee, C.-M., Cho, M.-H., and Hahn, T.-R. (2001).
Physical Stability of the Blue Pigments Formed from Geniposide
of Gardenia Fruits: Effects of pH, Temperature, and Light.
Journal of Agricultural and Food Chemistry 49, 430-432.

無法下載圖示 全文公開日期 2018/11/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE