簡易檢索 / 詳目顯示

研究生: 鄧人魁
Ren-Kwei Teng
論文名稱: 營建業多參數墜落職災風險評估模式
Risk Evaluation Model of Multi-parameter Fall Accident in the Construction Industry
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 高明秀
Minh-Tu Cao
吳育偉
Yu-Wei Wu
楊亦東
I-Tung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: 墜落危險區域熱壓力代謝熱風險評估
外文關鍵詞: Fall Accident, Hazardous Area, Heat Stress, Metabolic Heat, Risk Evaluation
相關次數: 點閱:323下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

營建業長年屬高職災行業,依據勞動部重大職災資料顯示,營造業職災死亡千人率遠高於其他產業,且台灣與其他國家長年相比,仍遠高於其他國家。在勞研所109年職災類型統計中,墜落、滾落佔營建業職災的59.61%,是職災類型的大宗,對於墜落的預防應為首要課題。作業位置是墜落職災要因,常發生在屋頂、外牆施工架、鋼構等位置。再者發生墜落的工項多為高空作業,因能給予勞工的休息機會有限,勞工生理負荷相對較高,且時常暴露在熱環境下執行作業,過去職災時序紀錄中,在夏季時落發生率相對較高,凸顯熱危害為墜落職災的要因之一。隨著科技發展,穿戴感測技術逐漸成熟,近來也有研究應用於營建業,可在不影響工作性的情況下測量生理數據。
本研究針對營建業建築工程建構墜落風險評估模式,其中包括兩個風險因子:區域風險和生理風險,再藉由兩個風險因子求得墜落風險值。區域風險:蒐集職安署公布之民國85~105年營建業墜落職災案例,總計1683筆案例1718人,將統計墜落發生時所在位置歸類為危險區域,依照每年職災人數頻率定義危險區域墜落可能性。生理風險:美國勞研所NIOSH開發一種熱危害評估模式RALs/RELs,以代謝熱和綜合溫度熱指數WBGT評估每小時休息/工作建議排程,本研究應用此評估模式,以一小時為評估單位,利用綜合溫度熱指數得到不同程度代謝熱,將其定義為代謝熱負荷嚴重度。最後以光學心率傳感器測量勞工心率值,搭配Malchaire J代謝熱評估模式轉換為代謝熱,依定義之嚴重度,評估勞工的代謝熱負荷風險等級。本研究將危險區域墜落可能性乘以代謝熱負荷嚴重度建構墜落風險評估模式,即時評估勞工墜落風險等級,以利實施風險處置,降低墜落職災的發生。


The construction industry has been a high occupational accident industry for many years. According to the Ministry of Labor's occupational accident data, the death rate of the construction industry is much higher than other industries. Compared with other countries, the death rate in Taiwan is much higher than other countries. In the 2020-year occupational accident type statistics, falling and rolling accounted for 59.61% of occupational accident in the construction industry. It is a largest number of occupational accident, and the prevention of falling should be the primary issue. The work location is the main cause, which often occur on roofs, exterior wall construction frames, steel structures, etc. Most of the works that have fallen are high operations, and the rest opportunities are limited. Laborers’ physiological load is relatively high, and they are often exposed in heat environment. In the past time series records of occupational accidents, the incidence of fall was relatively high in summer, and thermal hazards were one of the main causes of fall.With the development of technology, wearable sensing technology has gradually matured. Recently, research has also been applied to the construction industry to measure physiological data without affecting workability.
This research is aimed create risk evaluation model of fall accident at the construction project. The evaluation model includes two risk factors: location risk and physiological risk, and then obtain the fall risk value. Area risk: Collected cases of occupational accidents in the construction industry from 1996 to 2016 published by the ILOSH. A total of 1,683 cases of 1,718 people were collected. Classifying the location when the fall occurred as a hazardous area, and defining the hazardous area risk level according to the annual occupational accident probability. Physiological risk: NIOSH developed a thermal hazard evaluation model, RALs/RELs, which uses metabolic heat and WBGT to evaluate the hourly rest/work schedule. This research uses this evaluation model and takes one hour as the evaluation. Using WBGT get different levels of physiological risk and then use the optical heart rate sensor to measure the worker's heart rate. Convert heart rate to metabolic heat by Malchaire J evaluation model. Evaluate the severity of worker’s metabolic heat load based on different levels. In this reasearch, the possibility of fall in hazardous areas multiply the severity of metabolic heat load to create fall accident risk evaluation model. Immediately evaluate the worker fall risk level to facilitate risk management and reduce the occurrence of fall accidents.

摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究流程 3 1.5 論文架構 5 第二章 文獻回顧 7 2.1 墜落位置 9 2.1.1開口位置之防範 10 2.1.2危險性工作場所 13 2.1.3危險區域Hazardous Area 17 2.2 熱危害環境 19 2.2.1高氣溫戶外作業勞工熱危害預防指引 20 2.2.2綜合溫度熱指數The Wet Bulb Globe Temperature 28 2.3 生理負荷 31 2.3.1心率Heart Rate (HR) 36 2.3.2代謝熱Metabolic Heat/Metabolic rate (M) 37 2.4 熱壓力暴露量表The NIOSH RALs and RELs 40 2.4.1熱適應Heat Acclimatization 40 2.4.2時間加權平均數 Time-Weighted Average(TWA) 43 2.4.3熱壓力建議暴露量表RALs與RELs 43 2.5 營造工程施工風險評估技術 45 2.5.1風險評量 47 2.5.2風險對策 50 2.6 穿戴裝置感測技術 51 2.6.1光體積變化描記圖法Photoplethysmography(PPG) 52 2.6.2心電圖Electrocardiography(ECG/EKG) 53 第三章 研究方法 54 3.1 危險區域墜落可能性 56 3.1.1墜落職災歷史案例 56 3.1.2 危險區域墜落發生頻率 60 3.2 代謝熱負荷嚴重度 63 3.2.1綜合溫度熱指數WBGT 64 3.2.2代謝熱M 64 3.2.3熱壓力建議暴露量表The NIOSH RALs/RELs 64 3.3 勞工墜落風險值 68 第四章 案例試驗與分析 70 4.1 試驗場域與設備 70 4.1.1試驗場域 70 4.1.2試驗設備 71 4.2 施測對象與試驗方法 73 4.2.1施測對象 73 4.2.2試驗方法 73 4.3 案例試驗結果 76 4.3.1危險區域墜落可能性 76 4.3.2代謝熱負荷嚴重度 78 4.3.3勞工墜落風險值 83 第五章 結論與建議 86 5.1 結論 86 5.2 建議 87 參考文獻 88 附錄A 91

1. 勞動部, 107年國際勞動統計. 2018.
2. 勞動及職業安全衛生研究所, 營造業重大職災知識平台. 2020.
3. Huang, X. and J. Hinze, Analysis of Construction Worker Fall Accidents. 2003. 129(3): p. 262-271.
4. Kang, Y., et al., Trends of Fall Accidents in the U.S. Construction Industry. 2017. 143(8): p. 04017043.
5. 勞動部職業安全衛生署, 85~105年度營造業重大職災實例摘要. 2016.
6. 朱文勇, 營造重大職災因果之研究, in 土木工程學研究所. 2006, 國立臺灣大學: 台北市. p. 127.
7. 楊美媛, 營造業職災要因分析及因應對策之研究, in 土木工程學研究所. 2016, 國立臺灣大學: 台北市. p. 87.
8. 鄭其恒, 以現場連續心率監測評估高架作業環境工作負荷, in 土木工程學研究所. 2019, 國立臺灣大學: 台北市. p. 76.
9. 勞動部職業安全衛生署, 職業災害統計網路填表系統. 2020.
10. 蕭新益, 基於建築資訊模型之自動化開口偵測與安全防護, in 營建工程系. 2019, 國立臺灣科技大學: 台北市. p. 176.
11. 法務部全國法規資料庫工作小組, 職業安全衛生設施規則. 2020.
12. 陳嫺芷, 公共工程安全衛生費用編列之探討-以丁類危險性工作場所橋梁工程為例, in 土木工程與防災科技研究所. 2013, 國立高雄應用科技大學: 高雄市. p. 90.
13. 法務部全國法規資料庫工作小組, 危險性工作場所審查及檢查辦法. 2017.
14. NFPA, Article 500 of the National Electrical Code (NEC).
15. Executive, H.a.S., Hazardous Area Classification and Control of Ignition Sources. 2020.
16. 勞動部職業安全衛生署, 危險區域劃分評估工具. 2020.
17. 勞動部職業安全衛生署, 高氣溫戶外作業勞工熱危害預防指引. 2019.
18. 勞動部職業安全衛生署, 高氣溫戶外作業熱危害預防行動資訊網. 2020.
19. 勞動及職業安全衛生研究所, 國內高氣溫戶外工作者熱危害預防及檢查作法研究. 2014.
20. 2003 TLVs and BEIs : based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. TLVs and BEIs: threshold limit values for chemical substances and physical agents. 2003, Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
21. NIOSH, Occupational Exposure to Heat and Hot Environments. 2016.
22. 職業安全健康局, 本港建造業高處墮下的死因研訊個案(1999-2011)分析. 2014.
23. AHA, All About Heart Rate (Pulse). 2020.
24. AHA, Tachycardia: Fast Heart Rate. 2020.
25. American College of Sports, M., ACSM's guidelines for exercise testing and prescription / American College of Sports Medicine. 9th ed. ed. Guidelines for exercise testing and prescription., ed. L.S. Pescatello. 2014, Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health.
26. Hwang, S. and S. Lee, Wristband-type wearable health devices to measure construction workers' physical demands. Automation in Construction, 2017. 83: p. 330-340.
27. Parsons, K.C., Human thermal environments : the effects of hot, moderate, and cold environments on human health, comfort, and performance / Ken Parsons. Third edition. ed. 2014, Boca Raton: CRC Press, Taylor & Francis Group.
28. Malchaire, J., F.R. d'Ambrosio Alfano, and B.I. Palella, Evaluation of the metabolic rate based on the recording of the heart rate. Industrial health, 2017. 55(3): p. 219-232.
29. 鄭天浚, 郭., 徐祥清, 熱危害引起之職業疾病認定參考指引. 2020.
30. The occupational environment : its evaluation, control, and management / Salvatore R. DiNardi, editor. 2nd ed. ed, ed. S.R. DiNardi and S.R. DiNardi. 2003, Fairfax, Va: AIHA Press American Industrial Hygiene Association.
31. NIOSH, Occupational Exposure to Heat and Hot Environments. 1986.
32. 勞動部職業安全衛生署, 營造工程施工風險評估技術指引解說手冊. 2018.
33. 日商丸紅國際股份有限公司, 台灣桃園國際機場聯外捷運系統建設計畫機電系統統包工程風險管理報告. 2010.
34. Pelaez, E.A. and E.R. Villegas. LED power reduction trade-offs for ambulatory pulse oximetry. in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2007.
35. 立錡科技, ECG/PPG量測解決方案. 2020.
36. MedlinePlus, Electrocardiogram. 2020.
37. 臺北市立關渡醫院檢驗科, EKG心電圖原理. 2015.

無法下載圖示 全文公開日期 2025/08/26 (校內網路)
全文公開日期 2025/08/26 (校外網路)
全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE