簡易檢索 / 詳目顯示

研究生: 王建智
Jian-Zhi Wang
論文名稱: 以光激螢光及拉曼光譜研究硒化鋅鈹鎘之光學特性
Characterization of Cd1-x-yBexZnySe mixed crystals by Photoluminescence and Raman scattering
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 陳永芳
none
孫澄源
none
樂錦盛
none
程光蛟
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 69
中文關鍵詞: 光激螢光光譜拉曼光譜
外文關鍵詞: Raman scattering, Photoluminescence
相關次數: 點閱:368下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文是以光激螢光光譜 (PL),針對由15K至300K的溫度變化範圍中所得之結果來探討烏采結構 (Wurtzite) 的硒化鋅鈹鎘(Cd1-x-yBexZnySe) 四元化合物晶體之光學特性,並以拉曼光譜探討其於室溫之光學特性。
文中所探討之樣品均是利用高壓布里奇曼法 (high pressure Bridgman method) 成長而成,其鈹 (Be) 與鋅 (Zn) 之濃度範圍分別為3%~15% 及3%~45%。論文中,利用勞倫茲線型 (Lorentzian lineshape)針對能帶邊際激子之PL譜線做吻合。由光激螢光光譜 (PL) 於低溫 (15K)下之譜線中可觀察到三個躍遷訊號,由高能量處往低能量處依次為能帶邊際激子譜線 (band-edge exciton line, X) 躍遷訊號、施體-受體對(donor-acceptor pairs, DAP) 躍遷訊號及深層能階 (deep level, DL) 躍遷訊號。Varshni方程式吻合分析而得的參數 會隨著鈹 (Be) 與鋅 (Zn) 的含量增加而增加。此外,由展寬參數中可觀察出,本論文討論之樣品其LO和ZnSe與一些III-V族半導體比較。本論文中分析所得之結果將與成長在磷化銦 (InP) 基板上之硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 薄膜作比較並加以討論之。
此外於室溫下所量測硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 之拉曼光譜中,我們可以探討其區域光聲子模態之多模態行為可發現其光聲子模態表現出三模態 (three-mode behavior) 之行為。其中BeSe-like之光聲子模態在較高頻率區域,而ZnSe-like與CdSe-like之光聲子模態則在較低頻率區域,頻率由高至低排列順序分別為BeSe-like、ZnSe-like與CdSe-like之光聲子模態,且當x~0時,BeSe-like的光學聲子模態收斂成一個頻率,像是一個Be的雜質模態 (impurity mode) 在CdSe中。


This thesis deals with the investigation of temperature dependence of the near band-edge transitions of a series of wurtzite type Cd1-x-yBexZnySe mixed crystals using photoluminescence (PL) in the temperature range 15K to 300K. This series of mixed crystals have also been studied by Raman scattering at room temperature. The crystals were grown by the modified high pressure Bridgman method from the melt with 0.03<x<0.15 and 0.03<y<0.45.
Typical PL spectrum at low temperature consists of an exciton line, an edge emission feature due to recombination of donor-acceptor pairs, and a broad band related to recombination through deep level defects. The peak positions of the exciton emission lines in the PL spectra correspond quite well to the transition energy of exciton A from previous reported electromodulation data. The parameters that describe the temperature dependence of the band edge exciton have been evaluated and discussed. The results are compared with that of the zinc-blende Cd1-x-yBexZnySe films grown on InP (100) substrates.
In addition, we can see that the optical phonons of the Cd1-x-yBexZnySe exhibit three-mode behavior at room temperature Raman spectrum. For a given x (0.03<x<0.15) and y (0.03<y<0.45) there are three pairs of optical phonons corresponding to the BeSe-like phonons in the higher frequency range and to the ZnSe-like and CdSe-like phonons in the lower frequency range. As x tends to 0 the BeSe-like optical phonons merge toward one frequency which can be regarded as the impurity mode of Be in pure CdSe.

中文摘要Ⅰ 英文摘要Ⅲ 目 錄Ⅳ 圖 索 引Ⅵ 表 索 引Ⅷ 第一章 緒論 1 1.1 研究背景 1 1.2 研究主題與方法 2 第二章 硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 半導體之簡介 6 2.1 硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 簡介 6 2.2 硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 之成長與製備 7 第三章 量測理論及技術 10 3.1 光激螢光光譜 10 3.2 光激螢光光譜系統與量測方法概述 13 3.3 拉曼光譜 14 3.3.1 拉曼光譜簡介 14 3.3.2 拉曼光譜原理 15 3.3.3 拉曼光譜之應用 17 3.4 拉曼光譜系統與量測方法概述 18 第四章 結果與討論 20 4.1 硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 光激螢光光譜分析 20 4.1.1 硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 之光學特性 21 4.1.2 硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 之溫度特性 25 4.2 四元化合物晶體之拉曼光譜分析 41 4.2.1 硒化鎘 (CdSe) 與硒化鋅 (ZnSe) 之拉曼光譜分析 41 4.2.2 硒化鋅鈹鎘 (Cd1-x-yBexZnySe) 拉曼光譜分析 45 4.2.2.1區域中心光聲子之多模態行為 45 4.2.2.2硒化鋅鈹鎘化合物晶體 47 第五章 結論 61 參考文獻 63 作者簡介 68 致謝 69

1.M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-Green Laser Diodes”, Appl. Phys. Lett., Vol.59, No.11, pp.1272-1274(1991).

2.H. Jeon, J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, and R. L. Gunshor, “Blue-Green Injection Laser Diodes in (Zn,Cd)Se/ZnSe Quantum Wells”, Appl. Phys. Lett., Vol.59, No.27, pp.3619-3621(1991).

3.A. Waag, F. Fischer, K. Schll, T. Baron, H.-J. Lugauer, Th. Litz, U. Zehnder, W. Ossau, T. Gerhard, M. Keim, G. Reuscher, and G. Landwehr, “Laser Diodes Based on Beryllium-Chalcogenides”, Appl. Phys. Lett., Vol.70, No.3, pp.280-282(1997).

4.F. Fischer, G. Landwehr, Th. Litz, H. J. Lugauer, U. Zehnder, and Th. Gerhard, Journal of Crystal Growth, “II-VI Light-Emitting Devices Based on Beryllium Chalcogenides”, Vol.175/176, No.1, pp.532-540(1997).

5.A. Waag , F. Fischer, J. Laubender, H. J. Lugauer, U. Lunz, Th. Litz, U. Zehnder, W. Ossau, T. Gerhard, M. Moller, and G. Landwehr, “Molecular-Beam Epitaxy of Beryllium-Chalcogenide-Based Thin Films and Quantum-Wall Structures”, J. Appl. Phys., Vol.80, No.2, pp.792-796 (1996).

6.F. Vigu, E. Tourni, and J. -P. Faurie, “Zn(Mg)BeSe-Base P-I-N Photodiode Operating in the Blue-Violet and Near-Ultraviolet Spectral Range”, Appl. Phys. Lett., Vol.76, No.2, pp.242-244(2000).

7.J. Y. Zhang, D. Z. Shen, X. W. Fan, B. J. Yang, and Z. H. Zheng, “ZnBeSe Epitaxy Layers Grown by Photo-Assisted Metalorganic Chemical Vapor Deposition”, Journal of Crystal Growth, Vol.214/215, pp.100-103(2000).

8.A. Muńoz, P. Rodrguez, and A. Mujica, “Electronic and Structural Properties of BeSe, BeTe, and BeS: Comparison Between Ab-Initio Theory and Experiments”, Phys. Stat. Sol. (b), Vol.198, No.1, pp.439-446(1996).

9.A. Waag, F. Fischer, H. J. Lugauer, T. Litzm, J. Laubender, U. Lunz, U. Zehnder, W. Ossau, T. Gerhardt, M. Mller, and G. Landwehr, “Molecular-Beam Epitaxy of Beryllium-Chalcogenide-Based Thin Films and Quantum-Well Structures”, J. Appl. Phys., Vol.80, No.2, pp.792-796 (1996).

10.C. H. Hsieh, Y. S. Huang, C. H. Ho, K. K Tiong, M. MuŃoz, O. Maksimov, and M. C. Tamargo, “Temperature Dependence of the Band-Edge Transitions of ZnCdBeSe”, Jpn. J. Appl. Phys., Vol.43, No.2, pp.459-466 (2004).

11.O. Maksimov, S. P. Guo, and M. C. Tamargo, “Be-Chalcogenide Alloys for Improved R-G-B LEDs: BexZnyCd1-x-ySe on InP”, Phys. Stat. Sol. (b), Vol.229, No.2, pp.1005-1009(2002).

12.A. A. Wronkowska, F. Firszt, H. Arwin, A. Wronkowski, M. Wakula, K. Strzalkowski, and W. Paszkowicz, “Characterisation of Cd1–x–yBexZnySe crystals by spectroscopic ellipsometry and luminescence”, Phys. Stat. Sol. (c), Vol.3, No.4, pp.1193-1196(2006).

13.Y. T. Liu, P. Sitarek, Y. S. Huang, F. Firszt, S. Łęgowski, H. Męczyńska, and A. Marasek, W. Paszkowicz and K. K. Tiong, “Temperature dependence of the edge excitonic transitions of the wurtzite Cd1–x–yBexZnySe crystals”, J. Appl. Phys., Vol.98, pp.083519-1〜083519-7 (2005).

14.F. P. Doty, J. F. Butler, J. F. Schetzina and K. A. Bowers, “CdTe and CdZnTe Crystal Growth and Production of Gamma Radiation Detectors”, J. Vac. Sci. Technol. B, Vol.10, No. 4, pp.1418-1422(1992).

15.汪建民,材料分析,第237〜249頁,新竹市,中國材料科學學會,民國八十七年。

16.A. M. Mintairov, S. Raymond, J. L. Merz, F. C. Peiris, S. Lee, U. Bindley, J. K. Furdyna, V. G. Melehin, and K. Sadchikov, “Optical spectra of wide band gap BexZn1-xSe alloys”, Semiconductors, Vol.33, No.9, pp.1021-1023 (1999).

17.A. A. Wronkowska, A. Wronkowski, F. Firszt, S. Łęgowski, H. Męczyńska, A. Marasek, and W. Paszkowicz, “Characterization of CdBeSe alloy by spectroscopic ellipsometry and photoluminescence”, Phys. Stat. Sol. (c), Vol.1, No.4, pp.641-644(2004).

18.Y. P. Varshni, “Temperature Dependence of The Energy Gap in Semiconductors”, Physica, Vol.34, No.1, pp.149-154(1967).

19.L. Malikova, W. Krystek, F. H. Pollak, N. Dai, A. Cavus, and M. C. Tamargo, “Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se”, Phys. Rev. B, Vol.54, No.3, pp.1819-1824(1996).

20.S. Logothetidis, M. Cardona, P. Lautenschlager and M. Garriga, “Interband critical points of GaAs and their temperature dependence”, Phys. Rev. B, Vol.34, No.4, pp.2458-2469(1986).

21.H. Shen, S. H. Pan, Z. Hang, J. Leng, F. H. Pollak, J. M. Woodall, and R. N. Sacks, “Photoreflectance of GaAs and Ga0.82Al0.18As at elevated temperatures up to 600 °C”, Appl. Phys. Lett., Vol.53, No.12, pp.1080-1082(1988).

22.Z. Hang, H. Shen, and F. H. Pollak, “Temperature dependence of the Eo and Eo + △E0 gaps of InP up to 600°C”, Solid State Communications, Vol.73, No.1, pp.15-18(1990).

23.Y. S. Huang, F. H. Pollak, S. S. Park, K. Y. Lee, and H. Morko, “Contactless electroreflectance, in the range of 20K<T<300K,of freestanding wurtzite GaN prepared by hydride-vapor-phase epitaxy”, J. Appl. Phys., Vol.94, No.2, pp.899-903(2003).

24.P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence”, Phys. Rev. B, Vol.35, No.17, pp.9174-9189(1987).

25.S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors”, Phys. Rev. B, Vol.42, No.17, pp. 11218-11231(1990).

26.Zollner, Stefan, Sudha Gopalan, and Manuel Cardona, “The. Temperature Dependence of the Band Gaps in InP, InAs, InSb, and. GaSb”, Solid State Communications, Vol.77, No.7, pp.485-488(1991).

27.A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers”, Appl. Phys. Lett., Vol.71, No.14, pp. 1981-1983(1997).

28.Plotnichenko, V. G. , Mityagin, Yu. A. , Vodopyanov, L. K. , “Investigation of fundamental vibrations in CdSe by Raman scattering and infrared reflection methods”, Sov. Phys. Solid State, Vol.19, No.9, pp.2706-2710 (1977).

29.J. J. Liang, “Raman Scattering by Phonons in Wide gap Ⅱ-VI Compounds, Heterostructures, and Interface”, doctoral dissertation, Bayerischen Julius-Maximilians-Universitt, Wrzburg, (2000).

30.I. F. Chang and S. S. Mitra, ” Application of a Modified Random-Element-Isodisplacement Model to Long-Wavelength Optic Phonons of Mixed Crystals”, Phys. Rev. B, Vol.172, No.1, pp.924-933(1968).

31.B. Hennion, F. Moussa, G. Pepy, and K. Kunc, “Normal modes of vibrations in ZnSe”, Phys. Lett. A, Vol.36, No. 5, pp.376-378(1971).

32.S. Doyen, O. Pages, L. Lang, and J. Hugel, “Phonon Dispersion Curves of BeSe and BeTe”, Phys. Stat. Sol. (b), Vol.229, No.1, pp.563-566(2002).

33.M. Szybowicz, M. Kozielski, F. Firszt, S. Łęgowski, and H. Męczyńska, “Raman scattering study of ZnBeSe semiconducting mixed crystals”, Cryst. Res. Technol. Vol.38, No.3-5, pp.359-365(2003).

34.V. Wagner, J. J. Liang, R. Kruse, S. Gundel, A. Waag, and J. Geurts, “Lattice Dynamics and Bond Polarity of Be-Chalcogenides A New Class of Ⅱ-VI Material”, Phys. Stat. Sol. (b), Vol.215, No.1, pp.87-91(1999).

35.A. S. Barker, Jr. and A. J. Sievers, “Optical studies of the vibrational properties of disordered solids”, Rev. Mod. Phys., Vol.47, Suppl. No.2 (1975).

36.D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe”, Phys. Rev. B, Vol.33, No.2, pp.1160-1165(1986).

37.R. Vogelgesang, J. J. Liang, V. Wagner, H. J. Lugauer, J. Geurts, A. Waag, and G. Landwehr, “Wavelength-dependent optical degradation of green II–VI laser diodes”, Appl. Phys. Lett., Vol.75, No.10, pp.1351- 1353(1999).

38.O. Pages, M. Ajjoun, J. P. Laurenti, D. Bormann, C. Chauvet, E. Tournie, and J. P. Faurie, “Raman study of ZnxBe1-xSe alloy (100) epitaxial layers”, Appl. Phys. Lett., Vol.77, No.4, pp.519-521(2000).

39.R. Beserman, “Zone Edge Phonons In CdS1-xSex”, Solid State Communications, Vol.23, No.5, pp.323-327(1977).

QR CODE