簡易檢索 / 詳目顯示

研究生: 蔡宜庭
Yi-Ting Tsai
論文名稱: QSFP-DD高速連接器與L頻段雷達及追蹤天線之設計
Design of QSFP-DD High Speed Connector and L-band Radar and Tracking Antennas
指導教授: 楊成發
Chang-Fa Yang
口試委員: 楊成發
Chang-Fa Yang
蘇侯安
廖文照
林健維
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 132
中文關鍵詞: 高速連接器QSFP-DD雷達天線Yagi天線L頻段
外文關鍵詞: High Speed Connector, QSFP-DD, Radar Antenna, Yagi Antenna, L Band
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要討論三個項目,第一部分根據高速傳輸速率與數據吞吐量的需求,提出QSFP-DD高速連接器設計,此連接器採用了 8 個高速通道,全部傳輸速率可達到 800 Gbps,以高效且快速的傳輸大量資訊,滿足現代人對於高密度、高性能連接解決方案的需求,可成為現代數據中心和雲計算環境中的理想選擇。
第二部分,隨著航空產業的快速發展和無線通信技術的不斷創新,飛機通信系統的可靠性和效率已成為航空運輸安全和效率的關鍵因素。天線作為飛機通信系統中不可或缺的一部分,其性能直接關係到飛機與地面通信、飛行監控以及衛星定位系統的關鍵連接。因此,對於飛機天線的設計和性能要求越來越高。本論文提出可應用於飛機前端的L頻段雷達,此天線應用頻率為1030-1090MHz,其具有高增益與低反射損耗等良好特性,滿足高精度和高穩定性的要求,提高飛機的安全性。
第三部分,隨著技術的不斷進步,地面追蹤技術的安全性能將進一步提升。這項技術的安全性體現在數據的準確性以及對地面和空中潛在威脅的識別,讓地面上的人們能夠精確偵測目標的距離、速度和方位。為了提高地面追蹤技術的可靠性和精確性,本論文研究設計了一款可摺疊收納且具有高增益和高隔離度的追蹤天線,其中採用Yagi天線型式,以提高指向性和增益值,並在有限空間中滿足天線效能需求。


This thesis mainly discusses three topics. The first part proposes the QSFP-DD high speed connector based on the requirements of high-speed transmission rate and data throughput. This connector adopts the design of 8 high-speed channels, and the total transmission rate can reach 800 Gbps to transmit large amounts of information efficiently and quickly, meeting modern needs for high-density and high-performance connection solutions to become an ideal choice in modern data centers and cloud computing environments.
In the second part, with the rapid development of the aviation industry and the continuous innovation of wireless communication technology, the reliability and efficiency of aircraft communication systems have become key factors for the safety and efficiency of air transportation. As an indispensable part of the aircraft communication system, the performance of the antenna is directly related to the key connection between the aircraft and the ground communication, flight monitoring and satellite positioning systems. Therefore, the design and performance requirements for aircraft antennas are getting higher and higher. This study proposes an L-band radar that can be applied to the front end of the aircraft. The application frequency of this antenna is 1030-1090MHz. It has high gain, good characteristics such as high directivity and low reflection loss to meet the requirements of high precision and stability to improve the safety of aircraft.
In the third part, with the continuous advancement of technology, the safety performance of ground tracking technology will be further improved. The safety of this technology is reflected in the accuracy of data and the identification of potential threats on the ground and in the air, allowing people on the ground to accurately measure the distance, speed and orientation of targets. In order to improve the reliability and accuracy of ground tracking technology, this thesis designs a foldable tracking antenna with high gain and high isolation. It uses a Yagi type antenna to improve directivity and gain values to meet antenna needs in limited space.

摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文組織 2 第二章 高速連接器概論 3 2.1 前言 3 2.2 特性阻抗 3 2.3差模訊號 7 2.4串音干擾 8 2.5傳輸損耗 9 2.6時域反射 11 2.7連接器製造 13 2.8小結 14 第三章 QSFP-DD高速連接器 15 3.1前言 15 3.2 QSFP-DD連接器規範與架構 16 3.3模擬 21 3.3.1連接器端口定義 23 3.3.2連接器卡端設計 24 3.3.3連接器板端設計 28 3.3.4連接器S參數與阻抗設計 30 3.3.5連接器串音抑制 39 3.4 小結 42 第四章 L頻段雷達之設計 43 4.1前言 43 4.2倒F型天線設計原理 44 4.3 1030~1090 MHZ倒F型天線設計與結構 45 4.3.1 1030~1090 MHz倒F型天線單元設計 49 4.3.2 1030~1090 MHz倒F型天線單元模擬結果 51 4.3.3 1030~1090 MHz倒F型陣列天線設計 59 4.3.4 1030~1090 MHz倒F型陣列天線模擬結果 62 4.3.5 1030~1090 MHz倒F型Yagi天線設計 72 4.3.6 1030~1090 MHz倒F型Yagi天線模擬結果 79 4.3.7 1030~1090 MHz倒F型天線導引結構優化 87 4.3.8 1030~1090 MHz倒F型天線優化模擬結果 90 4.3.9 1030~1090 MHz倒F型天線實作與量測結果 99 4.4小結 105 第五章 追蹤天線之設計 106 5.1 前言 106 5.2追蹤天線之結構與規範 107 5.3 偶極子天線設計原理 113 5.4 BALUN原理介紹 114 5.5追蹤天線之設計與模擬結果 116 5.6 小結 128 第六章 結論 129 參考文獻 131

[1] https://zh-cn.fmuser.net/wap/content/?20908.html
[2] https://murata.eetrend.com/article/2018-05/1001554.html
[3] https://www.oldfriend.url.tw/SIwave/ansys_ch_TDR%20analysis.html#TDR%E7%B0%A1%E4%BB%8B
[4] 呂羿儒,「毫米波連接器與MCX 軟排線設計」,國立臺灣科技大學,中華民國112年7月。
[5] https://community.fs.com/hk/article/differences-between-qsfp-dd-and-qsfp-qsfp28-qsfp56-osfp-cfp8-cobo.html
[6] Nextron, 正淩科技,連接器接腳技術參考資料。
[7] 林佳宏,「QSFP高速連接器之設計」,國立臺灣科技大學,中華民國112年7月。
[8] https://blog.csdn.net/maogoulai22008/article/details/115351032
[9] Kanata Muto, Katsuyuki Fujii, Yasuyuki Okumura “Evaluation of a 429 MHz Band Multiple Folded Planar Inverted-F Antenna Near the Human Body”, 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)
[10] Fahim Rashid; Md. Mashud Mustafiz; Mohendro K. Ghosh; “Selim Hossain, Design and Performance Analysis of Ultra Wideband Inverted-F antenna for Wi-Fi, WiMAX, WLAN and military applications”, 10.1109/ICCITechn.2012.
6509732
[11] Antenna Theory and Design, 3rd Edition by Warren L. Stutzman, Gary A. Thiele
[12] Zedong Wang; Guan-xi Zhang; Yingzeng Yin; Jianjun Wu, “Design of a Dual-Band High-Gain Antenna Array for WLAN and WiMAX Base Station” 10.1109/LAWP.2014.2352618
[13] https://www.antenna-theory.com/antennas/travelling/yagi.php
[14] Rajasekhar Reddy; R. Swaminathan, “Directivity Improvement of 9-Element Yagi Uda Antenna by increasing director elements in comparison with 7-Element Yagi Uda Antenna”, 10.1109/ICIEM54221.2022.9853131
[15] https://www.antenna-theory.com/antennas/halfwave.php
[16] https://jemengineering.com/blog-dipoles/
[17] https://www.sciencedirect.com/topics/computer-science/dipole-antenna
[18] https://www.mwrf.net/tech/basic/2018/24036.html
[19] http://www.mweda.com/html/tianxian-27045-1.html
[20] https://blog.csdn.net/wusuowei1010/article/details/124102070

無法下載圖示 全文公開日期 2034/08/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE