簡易檢索 / 詳目顯示

研究生: 藺莛恩
Ting-An Lin
論文名稱: 不同矽含量生物活性玻璃對細胞毒性與生物活性影響之研究
Influence of Si concentration on cytotoxicity and bioactivity of spray dried bioactive glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
鍾仁傑
Ren-Jie Chung
吳孟晃
Meng-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 生物活性玻璃噴霧乾燥法生物活性細胞毒性
外文關鍵詞: bioactive glass, spray dry, bioactivity, cytotoxicity
相關次數: 點閱:236下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著高齡化社會的來臨,老年人普遍有骨質疏鬆的問題,一旦發生骨折意外將不易修復,因此生物活性玻璃(Bioactive glass, BG) 因為具有良好的生物活性與骨傳導性,而受到許多關注。BG的製程有許多種,例如:傳統玻璃製程、溶膠-凝膠法、噴霧熱解法等等,但是傳統玻璃製程的純度不高,溶膠-凝膠法製程時間過長,而噴霧熱解法製程的粒徑不易控制。噴霧乾燥法(Spray dry, SD)法式一個較為新穎的生物活性玻璃製程,此法提供了一個純度高且能夠量產(i.e. 1kg/h)的方法。實驗中成功製備Si-Ca-P系統的生物活性玻璃,依照SiO2的含量分為58S、68S與76S的粉體及燒結後的塊材。
利用X光繞射技術(XRD)鑑定其相結構,使用電子顯微鏡(SEM)觀察其表面形貌。在體外測試中,將BG浸泡於人體模擬體液十二小時後,測量其pH值變化,並利用XRD與SEM測量其生物活性,最後進行MTT測試其細胞毒性。由實驗結果發現,對於生物活性(相同時間的HA生成量)而言,58S最佳,68S其次,而76S生物活性最差;但是對於細胞毒性而言,卻是76S細胞毒性最低,58S細胞毒性最高的結果。細胞毒性主要是因為過量的鈣離子釋放,造成細胞死亡,因此若將粉體燒結成塊材,鈣離子釋放較慢,使其細胞毒性降低。


The problem of the aging society is becoming more and more obvious. The most serious problem is the issue of osteoporosis associated with population aging. Once the bone fracture accident happens, it will not be easy to repair for the elderly people. Thus, bioactive glass (BG) has attracted much attention due to its excellent bioactivity and osteoconductivity properties. There are many kinds of processes to synthesize the BG, such as traditional glass process, sol-gel method, and spray pyrolysis. However, the BG powder in the traditional glass process has the problem of the low purity; in the sol-gel method need a long time to compose the BG powder; it is difficult to control the particle size using spray pyrolysis. For the Spray Dry (SD) method, which is a newly developed bioactive glass process that can provide a high purity and mass production (i.e. 1kg/h).

In this research, the powders and bulks of the Si-Ca-P system bioactive glass, 58S, 68S and 76S were successfully prepared by SD. The phase structure was characterized by X-ray diffraction (XRD). The surface morphology was observed using an electron microscope (SEM). The in-vitro bioactive tests were measured by XRD and SEM, and finally, the cytotoxicity was tested by MTT. The results indicated that 58S is the best sample for the bioactivity test (HA growth in the same soaking time) followed by 68S and 76S. However, the results of the cytotoxicity test are different from the bioactivity test, it is shown that 76S is the least cytotoxic in all the sample. In addition, 58S is the most cytotoxic sample due to a lot of the Ca2+ ions content in the 58S. The excess of Ca2+ ions release leads to the cell apoptosis. In order to overcome this problem to decrease the cytotoxicity, sintering the powder into a bulk can reduce the release rate of Ca2+ ions.

摘要 I Abstract II 致謝 II 目錄 V 圖目錄 IX 表目錄 XI 第一章、緒論 1 1.1研究背景 1 1.2研究動機 2 第二章 文獻回顧 3 2.1 骨骼 3 2.1.1 骨骼的成分 3 2.1.2 骨骼的構造 4 2.1.3 骨骼組織內細胞 6 2.1.4 骨折 7 2.1.5 骨折癒合 9 2.2 生醫材料 11 2.2.1 生醫材料簡介 11 2.2.2 生醫材料檢測 13 2.2.3 生醫陶瓷材料 15 2.2.4 生物活性玻璃 18 2.2.5 生物活性 20 2.3 細胞毒性 22 2.3.1 ATP染色法 22 2.3.2 LDH法 23 2.3.3 MTT法 24 2.4 噴霧乾燥法介紹 25 2.4.1 生物活性玻璃製程概述 25 2.4.2 噴霧乾燥法簡介 26 2.4.3 前驅物溶液的配製 27 2.4.4 影響粉體形貌與大小之機制 29 第三章、實驗方法 33 3.1實驗設計 33 3.2實驗藥品與儀器 37 3.2.1 X光繞射儀 39 3.2.2 聚焦型離子束顯微鏡 40 3.2.3 酸鹼度與體外生物活性測試 42 3.2.4 體外生物相容性測試 42 3.2.5 熱機械分析 44 第四章、實驗結果 45 4.1 市售商品Nova Bone分析 45 4.1.1 Nova Bone之相結構分析 45 4.1.2 Nova Bone之SEM圖 46 4.1.3 Nova Bone之pH變化圖 47 4.1.4 Nova Bone之生物活性測試 48 4.1.5 Nova Bone之細胞毒性測試 49 4.2 生物活性玻璃粉體分析 50 4.2.1 未酸洗生物活性玻璃之相結構分析 50 4.2.2 酸洗後生物活性玻璃之相結構分析 51 4.2.3 未酸洗生物活性玻璃之SEM圖 52 4.2.4 酸洗後生物活性玻璃之SEM圖 53 4.2.5 未酸洗與未酸洗生物活性玻璃之酸鹼度測試 54 4.2.6 未酸洗與酸洗後生物活性玻璃之細胞毒性比較 56 4.2.7 生物活性玻璃之比表面積量測 57 4.2.8 生物活性玻璃之生物活性試驗 58 4.2.9 生物活性玻璃之細胞毒性試驗 60 4.3生物活性玻璃塊材之分析 62 4.3.1 生物活性玻璃之熱機械分析 62 4.3.2 生物活性玻璃塊材之相結構圖 64 4.3.3 生物活性玻璃塊材之SEM圖 65 4.3.4 生物活性玻璃塊材之生物活性 66 4.3.5 生物活性玻璃塊材之細胞毒性 68 第五章、實驗討論 69 5.1 Nova Bone產品細胞毒性與生物活性之探討 69 5.2 pH值與生物活性玻璃之體外測試結果的關聯 70 5.2.1 pH值與生物活性和細胞毒性之關聯 70 5.2.2 生物活性玻璃之細胞毒性成因 72 5.3 生物活性玻璃粉體與塊材之細胞毒性比較 74 第六章、結論 76 第七章、未來工作 77 第八章、參考文獻 78   圖目錄 Figure 1.1 The diagram of hip fracture 1 Figure 2.2 The mechanism of absorption by osteoclasts 7 Figure 2.3 The different tissues involved in bone regeneration are shown above with the two important revascularization steps during tissue development. In the lower line the 5 consecutive phases of bone healing are depicted 10 Figure 2.4 Raman spectra of PLGA/Bioglass1 composite samples (100/50) as function of incubation time in PBS for (a) 0 days, (b) 7 days, (c)35 days. The formation of HA is indicated by the P-O peaks at 962cm-1 21 Figure 2.5 General spray-drying equipment configuration 26 Figure 2.6 Dependence of water concentration on reaction time during hydrolysis of TEOS catalysed by strong acids. 28 Figure 2.7 Dependence of water concentration on reaction time and pH’ during TEOS hydrolysis. 28 Figure 2.8 Various particle morphologies prepared using the spray-drying method 29 Figure 2.9 The effect of flow rate on the stability of droplets 31 Figure 2.10 Proposed particle formation process for high Peclet numbers 32 Figure 3.1 The experimental flow chart of Nova Bone analysis 34 Figure 3.2 The experimental flow chart of 58S,68S and 76S bioactive glass powder 35 Figure 3.3 The experimental flow chart of 58S,68S and 76S bioactive glass bulk 36 Figure 3.4 Diffraction by an array of point scatterers may be considered as Bragg reflection from planar arrays 40 Figure 3.5 The Schematic of TMA 44 Figure 4.1 XRD pattern of Nova Bone 45 Figure 4.2 SEM image of Nova Bone 46 Figure 4.3 The pH values as the function of soaking time of Nova Bone 47 Figure 4.4 The XRD patterns of Nova Bone soaked in SBF for 24h 48 Figure 4.5 The SEM image of Nova Bone soaked in SBF for 24h 48 Figure 4.6 The cell viability as a function of extract concentration of Nova bone powder and bulk 49 Figure 4.7 XRD patterns of 58S, 68S, and 76S as-received bioactive glass powders 50 Figure 4.8 XRD patterns of 58S, 68S, and 76S bioactive glass powders after HNO3- washing 51 Figure 4.9 SEM images of (a) 58S, (b) 68S, and (c)76S as-received bioactive glass powders calcined at 600oC for 1h. 52 Figure 4.10 SEM images of nitric acid washed (a) 58S, (b) 68S, and (c) 76S bioactive glass powders calcined at 600oC for 1h. 53 Figure 4.11 The pH values as the function of soaking time of 54 (a) as-received and (b) HNO3- washed bioactive glass powders 54 Figure 4.12 The cell viability as a function of SiO2 concentration for as-received and HNO3- washed bioactive glass powders 56 Figure 4.13 Specific surface areas as a function of SiO2 concentration of bioactive glasses 57 Figure 4.14 XRD patterns of 58S, 68S and 76S bioactive glass powders soaked in SBF for 24h 58 Figure 4.15 SEM images of (a) 58S, (b) 68S, and (c) 76S bioactive glass powders soaked in SBF for 24h 59 Figure 4.16 The cell viability as a function of extract concentration of bioactive glass powders 60 Figure 4.17 Percent shrinkage as a function of temperature of 58S, 68S and 76S bioactive glass powders 62 Figure 4.18 Percent shrinkage rate a function of temperature of 58S, 68S and 76S bioactive glass powders 63 Figure 4.19 XRD patterns of 58S, 68S, and 76S bioactive glass bulks sintered at 800oC for 1h 64 Figure 4.20 SEM images of (a) 58, (b) 68, and (c) 76S bioactive glass bulks sintered at 800oC for 1h 65 Figure 4.21 XRD patterns of 58S, 68S and 76S bioactive glass bulks soaked in SBF for 24h 66 Figure 4.22 SEM images of (a) 58S, (b) 68S, and (c) 76S bioactive glass bulks soaked in SBF for 24h 66 Figure 4.23 The cell viability as a function of extract concentration of bioactive glass bulks 68 Figure 5.1 HA integrate intensity and cell viability as a function of SiO2 concentration of bioactive glass powders 70 Figure 5.2 The cell viability of bioactive glasses added with the Ca2+ inhibitor 73 Figure 5.3 The cell viability as a function of SiO2 concentration of bioactive glass powders and bulks 75 表目錄 Table 2.1 Description of the Gustilo Classification System of Open Fracture 8 Table 2.2 The table of each kind of biomaterials 12 Table 2.3 Characteristic Features of Ceramic Biomaterials 17 Table 2.4 Sequence of Interfacial Reactions Involved in Forming a 19 Bond between Tissue and Bioactive Ceramics 19 Table 3.1 Information of experimental chemicals 37 Table 3.2 Details of experimental instruments 38

[1] Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Mater Sci Eng C Mater Biol Appl, 31 (2011) 1245-1256.
[2] N.E. Lane, Epidemiology, etiology, and diagnosis of osteoporosis, Am J Obstet Gynecol, 194 (2006) S3-11.
[3] E. Pellegrino, R. Biltz, The composition of human bone in uremia: observations on the reservoir functions of bone and demonstration of a labile fraction of bone carbonate, Medicine, 44 (1965) 397-418.
[4] J. Aerssens, S. Boonen, G. Lowet, J. Dequeker, Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research, Endocrinology, 139 (1998) 663-670.
[5] K. Rezwan, Q. Chen, J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27 (2006) 3413-3431.
[6] M.R. Allen, J.M. Hock, D.B. Burr, Periosteum: biology, regulation, and response to osteoporosis therapies, Bone, 35 (2004) 1003-1012.
[7] D. Shier, J. Butler, R. Lewis, Human anatomy and physiology, McGraw-Hill Boston, MA, USA2001.
[8] U. Stucki, J. Schmid, C.F. Hämmerle, N.P. Lang, Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration: a descriptive histochemical study in humans, Clinical oral implants research, 12 (2001) 121-127.
[9] E.E. Golub, K. Boesze-Battaglia, The role of alkaline phosphatase in mineralization, Current Opinion in Orthopaedics, 18 (2007) 444-448.
[10] H. Vaananen, H. Zhao, M. Mulari, J.M. Halleen, The cell biology of osteoclast function, J Cell Sci, 113 (2000) 377-381.
[11] Y. Tanaka, S. Nakayamada, Y. Okada, Osteoblasts and osteoclasts in bone remodeling and inflammation, Current Drug Targets-Inflammation & Allergy, 4 (2005) 325-328.
[12] P.H. Kim, S.S. Leopold, Gustilo-Anderson classification, Springer, 2012.
[13] H. Schell, G. Duda, A. Peters, S. Tsitsilonis, K. Johnson, K. Schmidt-Bleek, The haematoma and its role in bone healing, Journal of experimental orthopaedics, 4 (2017) 5.
[14] Y. Hu, S.R. Winn, I. Krajbich, J.O. Hollinger, Porous polymer scaffolds surface‐modified with arginine‐glycine‐aspartic acid enhance bone cell attachment and differentiation in vitro, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 64 (2003) 583-590.
[15] N. Ignjatović, S. Tomić, M. Dakić, M. Miljković, M. Plavšić, D. Uskoković, Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials, Biomaterials, 20 (1999) 809-816.
[16] J.L. West, J.A. Hubbell, Polymeric biomaterials with degradation sites for proteases involved in cell migration, Macromolecules, 32 (1999) 241-244.
[17] J.C. Vidal, E. Garcı́a, J.R. Castillo, In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system: determination of total cholesterol in serum, Analytica chimica acta, 385 (1999) 213-222.
[18] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Progress in polymer science, 32 (2007) 762-798.
[19] J. Woodman, J. Jacobs, J. Galante, R. Urban, Metal ion release from titanium‐based prosthetic segmental replacements of long bones in baboons: A long‐term study, Journal of Orthopaedic Research, 1 (1983) 421-430.
[20] P. Ducheyne, K.E. Healy, The effect of plasma‐sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt‐chromium alloys, Journal of biomedical materials research, 22 (1988) 1137-1163.
[21] J. Quinn, G. D QUINN, Indentation brittleness of ceramics: a fresh approach, Journal of Materials Science, 32 (1997) 4331-4346.
[22] S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders, Biomaterials, 23 (2002) 1065-1072.
[23] M. Mazzocchi, D. Gardini, P.L. Traverso, M.G. Faga, A. Bellosi, On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part II: chemical stability and wear resistance in body environment, Journal of Materials Science: Materials in Medicine, 19 (2008) 2889.
[24] Y. Chen, X. Miao, Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents, Biomaterials, 26 (2005) 1205-1210.
[25] G. Wei, P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials, 25 (2004) 4749-4757.
[26] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
[27] M. Neo, S. Kotani, T. Nakamura, T. Yamamuro, C. Ohtsuki, T. Kokubo, Y. Bando, A comparative study of ultrastructures of the interfaces between four kinds of surface‐active ceramic and bone, Journal of biomedical materials research, 26 (1992) 1419-1432.
[28] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3, Journal of biomedical materials research, 24 (1990) 721-734.
[29] T. Thamaraiselvi, S. Rajeswari, Biological evaluation of bioceramic materials-a review, Carbon, 24 (2004) 172.
[30] M. Ramrakhiani, D. Pal, T. Murty, Micro-indentation hardness studies on human bones, Cells Tissues Organs, 103 (1979) 358-362.
[31] O.P. Filho, G.P. La Torre, L.L. Hench, Effect of crystallization on apatite‐layer formation of bioactive glass 45S5, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 30 (1996) 509-514.
[32] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
[33] A.R. Boccaccini, V. Maquet, Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications, Composites Science and Technology, 63 (2003) 2417-2429.
[34] L. Ding, J. Stilwell, T. Zhang, O. Elboudwarej, H. Jiang, J.P. Selegue, P.A. Cooke, J.W. Gray, F.F. Chen, Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast, Nano letters, 5 (2005) 2448-2464.
[35] Y. Issa, D. Watts, P. Brunton, C. Waters, A. Duxbury, Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro, Dental Materials, 20 (2004) 12-20.
[36] R. Macnair, E. Rodgers, C. Macdonald, A. Wykman, I. Goldie, M. Grant, The response of primary rat and human osteoblasts and an immortalized rat osteoblast cell line to orthopaedic materials: comparative sensitivity of several toxicity indices, Journal of Materials Science: Materials in Medicine, 8 (1997) 105-111.
[37] H. Mueller, M.U. Kassack, M. Wiese, Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines, Journal of Biomolecular Screening, 9 (2004) 506-515.
[38] R. Wang, D.L. Doolan, T.P. Le, R.C. Hedstrom, K.M. Coonan, Y. Charoenvit, T.R. Jones, P. Hobart, M. Margalith, J. Ng, Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine, Science, 282 (1998) 476-480.
[39] D. Gerlier, N. Thomasset, Use of MTT colorimetric assay to measure cell activation, Journal of immunological methods, 94 (1986) 57-63.
[40] D.E. Dobry, D.M. Settell, J.M. Baumann, R.J. Ray, L.J. Graham, R.A. Beyerinck, A model-based methodology for spray-drying process development, Journal of pharmaceutical innovation, 4 (2009) 133-142.
[41] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Advanced Powder Technology, 22 (2011) 1-19.
[42] D. Walton, Spray‐Dried Particle Morphologies, Developments in Chemical Engineering and Mineral Processing, 10 (2002) 323-348.
[43] D.E. Oakley, Spray dryer modeling in theory and practice, Drying Technology, 22 (2004) 1371-1402.
[44] J. Cihlář, Hydrolysis and polycondensation of ethyl silicates. 1. Effect of pH and catalyst on the hydrolysis and polycondensation of tetraethoxysilane (TEOS), Colloids and surfaces A: Physicochemical and engineering aspects, 70 (1993) 239-251.
[45] C.K. Chua, K.F. Leong, 3D Printing and Additive Manufacturing: Principles and Applications (with Companion Media Pack) of Rapid Prototyping Fourth Edition, World Scientific Publishing Company2014.
[46] R.M. German, Powder metallurgy and particulate materials processing: the processes, materials, products, properties, and applications, Metal powder industries federation Princeton2005.
[47] F. Iskandar, L. Gradon, K. Okuyama, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol, Journal of Colloid and Interface Science, 265 (2003) 296-303.
[48] C.-H. Lo, T.-M. Hu, From a silane monomer to anisotropic buckled silica nanospheres: a polymer-mediated, solvent-free and one-pot synthesis, Soft matter, 13 (2017) 5950-5960.
[49] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharmaceutical research, 25 (2008) 999-1022.
[50] É. Lintingre, G. Ducouret, F. Lequeux, L. Olanier, T. Périé, L. Talini, Controlling the buckling instability of drying droplets of suspensions through colloidal interactions, Soft matter, 11 (2015) 3660-3665.
[51] H. Meyers, H. Myers, Introductory solid state physics, CRC press1997.
[52] T. Kokubo, H. Kushitani, C. Ohtsuki, S. Sakka, T. Yamamuro, Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid, Journal of Materials science: Materials in medicine, 3 (1992) 79-83.
[53] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27 (2006) 2907-2915.
[54] Z. Zhang, Q. Lai, Y. Li, C. Xu, X. Tang, J. Ci, S. Sun, B. Xu, Y. Li, Acidic pH environment induces autophagy in osteoblasts, Scientific Reports, 7 (2017) 46161.
[55] A.-M. Galow, A. Rebl, D. Koczan, S.M. Bonk, W. Baumann, J. Gimsa, Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration, Biochemistry and biophysics reports, 10 (2017) 17-25.
[56] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, 26 (2005) 4847-4855.
[57] F. Lorget, S. Kamel, R. Mentaverri, A. Wattel, M. Naassila, M. Maamer, M. Brazier, High extracellular calcium concentrations directly stimulate osteoclast apoptosis, Biochemical and biophysical research communications, 268 (2000) 899-903.

QR CODE