簡易檢索 / 詳目顯示

研究生: 范成宇
Cheng-Yu Fan
論文名稱: 典型鋼筋混凝土柱構件震後損傷定量實驗研究
Experimental Study in the Damage Quantification for Typical Reinforced Concrete Columns in the Post-earthquake
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 王勇智
Yung-Chih Wang
林克強
Ker-Chun Lin
鄭敏元
Min-Yuan Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 261
中文關鍵詞: 典型鋼筋混凝土反覆載重裂縫寬度變形角遲滯模型卸載勁度損傷評估裂縫比值
外文關鍵詞: typical reinforced concrete, unloading stiffness, damage assessment, crack width ratio
相關次數: 點閱:891下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究共進行三組模擬懸臂梁之柱構件試驗,試體斷面尺寸皆為400mm(寬)×400mm(深),柱主體淨高為1500mm,混凝土採用一般強度混凝土(fc’=21MPa),搭配一般強度鋼筋(fy=420MPa)及一般強度箍筋(fyt=280MPa)。上述試體規劃主要探討典型鋼筋混凝土柱構件於各破壞模式受反覆載重下之裂縫發展及裂縫寬度與構件變形角之關係,透過Takeda遲滯模型與試驗結果進行比對,並將Takeda遲滯模型之力量-位移包絡線轉換為裂縫寬度與力量之關係及裂縫寬度與卸載勁度之關係,以作為損傷評估之初步參考依據,本研究亦參考AIJ-2004之裂縫與變形角評估模型,針對撓曲裂縫及剪力裂縫進行統計,提供台灣適用之裂縫比值,並建立典型鋼筋混凝土柱構件裂縫寬度與構件變形角之量化關係,以推估構件震後殘留變形角及震時之尖峰變形角。依本研究成果顯示,撓曲破壞及撓剪破壞其主要裂縫為通過主筋之撓曲裂縫,剪力破壞其主要裂縫為剪力裂縫,各試體預測之殘留變形角及預測之尖峰變形角趨於不保守,且由總裂縫寬度計算之變形角較能精準預測其變形角之變化,而尖峰撓曲變形量與尖峰剪力變形量分別佔總變形量之0.9倍及0.12倍,裂縫比值若採用平均值扣掉一倍標準差,各試體預測值所對應之裂縫寬度皆大於試驗量測之裂縫寬度,且各試體預測值之勁度皆小於試驗值之勁度,其結果視為保守狀態。


    This study conduct three full-size experimental simulation of cantilever column member specimen with different failure mechanisms using general reinforced steel bars(fy=420MPa, fyt=280MPa), and the designed compressive strength of concrete is 21MPa. The purpose of this study is utilized Takeda hysteresis model compared with experimental results, moreover, Takeda hysteresis model of strength-displacement envelop will be divided into two portions, one is relationship between crack width and strength, and the other is relationship between crack width and unloading stiffness, as a reference to assess the damage quantification. According to the test result, the failure mechanism which is flexural and flexural-shear failure, the main crack is flexural crack width; however, the main crack for shear failure is shear crack width, and the angle of deformation calculated by the total crack width can accurately predict the variation, and the amount of flexural and shear deformation is 0.9 times and 0.12 times of the amount of total deformation respectively. If the crack width ratio adopt σ-μ, the predictive value corresponding to crack width of each specimen is bigger than the experimental result, and the predictive value of the stiffness of each test specimen are less than the test result, the results are seen as a conservative state.

    致謝 摘要 Abstract 目錄 表索引 圖索引 第一章 緒論 1.1研究背景與動機 1.2研究目的 1.3研究架構 第二章 文獻回顧 2.1 柱構件損傷度判定基準 2.1.1 構件耐震性能折減係數η 2.1.2 耐震性能殘存率R精算法 2.1.3 耐震性能殘存率R略算法 2.1.4 Park & Ang損傷指標 2.2日本建築學會•鋼筋混凝土建築物之耐震性能評價指針 2.2.1撓曲變形角與殘留撓曲裂縫之關係 2.2.2剪力變形角與殘留剪力裂縫之關係 2.2.3箍筋降伏與變形角之關係 2.2.4剪力變形角與剪力裂縫寬度關係之修正提案 2.3鋼筋混凝土柱構件非線性行為之相關文獻 2.3.1 Takeda遲滯模型 2.3.2 Otani針對Takeda遲滯模型之規則介紹 2.3.3 Takeda-slip遲滯模型 2.3.4高橋典之(2005)相關研究 第三章 試體設計與規劃 3.1試體規劃 3.1.1試體設計參數 3.1.2試體尺寸與配筋形式 3.2試驗配置 3.3試驗程序 3.4試驗量測 3.4.1外部變形量之量測 3.4.2材料應變量測 3.4.3裂縫寬度量測 3.5實際材料強度 3.5.1混凝土實際抗壓強度 3.5.2鋼筋拉伸試驗實際強度 第四章 試驗過程與結果 4.1撓曲破壞(FF-15S)試驗過程與裂縫發展 4.2撓剪破壞(FSF-15S) 試驗過程與裂縫發展 4.3剪力破壞(SF-30S) 試驗過程與裂縫發展 第五章 試驗結果之分析與討論 5.1 Takeda遲滯迴圈與試驗值之比較 5.2變形量之發展 5.2.1撓曲變形量及剪力變形量之計算 5.2.2 撓曲變形量及剪力變形量之貢獻 5.3 裂縫寬度與變形之關係 5.3.1 撓曲裂縫比值及剪力裂縫比值之發展 5.3.2主要剪力裂縫之角度 5.3.3撓曲變形角及剪力變形角之計算與預測 5.3.4裂縫主控之判斷 5.3.5裂縫寬度與變形量之關係 5.3.6裂縫寬度與力量之關係 5.3.7裂縫寬度與卸載勁度之關係 第六章 結論與建議 6.1 結論 6.2建議 參考文獻 附錄A 附錄B 附錄C

    [1] 內政部營建署, 災害後危險建築物緊急評估辦法, 2009.
    [2] 日本建築防災協會, 震災建築物ソ被災度區分判定基準れプヂ復旧技術指針, 日本, 2001.
    [3] 涂豐鈞, 邱建國, 考慮劣化與震損影響之RC校舍耐震能力評估研究, 碩士論文, 國立台灣科技大學營建工程研究所, 2012.
    [4] Park, Y. J. and Ang, A. H-S., Mechanistic Seismic Damage Model for Reinforced Concrete, Journal of the Structural Engineering (ASCE), Vol.111, No.4: 722-739, 1985.
    [5] AIJ. 2004. Guidelines for Performance Evaluation of Earthquake Resistant Reinforced Concrete Buildings(Draft), Architectural Institute of Japan, Tokyo, Japan.
    [6] S.B.Bhide, M.P.Collins: Influence of axial Tension on the shear Capacity of Reinforced Concrete Members, ACI Structural Journal, Sep.-Oct., 1989, pp.570-581.
    [7] SUGI Taichi, 2007, Damage Evaluation of RC Beam Members Based on Accurate Measurement of Displacement and Crack Widths with Scanner. (part2) Proposal of Rational Suggestion of Quantitative Evaluation Model for Evaluating of Shear Crack Width-Shear Deformation Relationship., Architectural Institute of Japan, Tokyo, Japan, pp.373-374.
    [8] T. Takeda, M. A. Sozen, and N. N. Nielsen, Reinforced Concrete Response to Simulated Earthquakes, Technical Research Report No. 5, 1971.
    [9] T. Takeda, Study of the Load-Deflection Characteristics of Reinforced Concrete Beams Subjected to Alternating Loads (In Japanese), Transactions, Architectural Institute of Japan, Volume 76, September 1962.
    [10] Toshimi KABEYASAWA, Hitoshi SHIOHARA, Shunsuke OTANI, and Hiroyuki AOYAMA, Analysis of the Full-scale Seven-story Reinforced Concrete Test Structure, Journal Faculty of Engineering, University of Tokyo, Vol. XXXVII, No. 2, 1983, pp.432-478.
    [11] Shunsuke Otani, Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis, Journal Faculty of Engineering, University of Tokyo, Vol. XXXVI, No. 2, 1981, pp.125-156.
    [12] SHUNSUKE OTANI and METE A. SOZEN, Behavior of Multistory Reinforced Concrete Frames During Earthquakes, Structural Research Series No. 392, November, 1972, pp.529-538.
    [13] Eto. H and T. Takeda, Elasto Plastic Earthquake Response Analysis of Reinforced Concrete Frame Structure(in Japanese), Report, Annual Meeting, Architectural Institute of Japan, 1973, pp.1261-1262.
    [14] 高橋典之, 鉄筋ヵ⑦ヱэみЬ建物ソ長期的耐震修復性能ズ関れんペ研究, 2005, pp.4-13.
    [15] 陳崇慶, 邱建國, 高強度鋼筋混凝土梁之剪力裂縫行為研究, 碩士論文, 國立台灣科技大學營建工程研究所, 2013.
    [16] AIJ. 1999. Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelastic Displacement Concept, Architectural Institute of Japan, Tokyo, Japan.

    QR CODE