簡易檢索 / 詳目顯示

研究生: 曾竑維
Hung-wei Tseng
論文名稱: 設計與製作高速雷射二極體基板之技術
Submount Technologies for Realizing High Speed Laser Diode
指導教授: 李三良
San-liang Lee
口試委員: 劉政光
C. -K. Liu
李奎毅
K. -Y. Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 119
中文關鍵詞: 半導體雷射散熱基版
外文關鍵詞: semiconductor laser, submount
相關次數: 點閱:165下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為應用於高速半導體雷射之散熱基板技術開發,由於高速雷射在操作時,需注入較大之電流以達到輸出模態穩定,而電流越大,所產生之熱能越多,造成波長飄移、輸出功率下降、以及頻寬下降,故在雷射封裝時,散熱設計顯得十分重要。基板之設計主要分為幾項重要因素,其一為增加熱之傳遞能力,達到雷射散熱之效果,在此考量下,正面電極朝下為縮減散熱距離之有效方法。另外,雷射在高頻操作下,其電極需與元件做設計,以達到阻抗匹配,因此針對雷射基板設計,採用共平面電極,以封裝高速雷射。在此情況下基板需成長薄膜絕緣層,以防止漏電流產生,但仍保有良好的散熱能力。本論文利用3倍頻量測方法,對不同絕緣層進行導熱係數的量測,進而分析出適合之絕緣層。
    對準耦合為高速雷射散熱基板另一重要技術,我們利用氫氧化鉀蝕刻凹槽,使透鏡光纖能夠深入元件本身,提高耦合效率,另外垂直對準上,嘗試利用凹槽成長合金焊料之方式,使晶粒能黏著於基板上,藉由合金焊料與凹槽面積比不同的設計,降低基板與元件之間的高低差,有效控制垂直方向的黏合高度。


    The thesis focuses on the development of a thermal-managed sub-mount platform for high-speed semiconductor laser applications. As the high-speed laser usually operates at relatively higher current bias in order to have a stable and single-frequency lasing output, however, the heating issue causes the wavelength shift, output power drop and the decay of its high-speed performance. Therefore, thermal management is of vital importance for laser packaging. The use of p-side down configuration for laser packaging is able to conduct the heat efficiently. The use of ground-signal-ground (GSG) planar electrode configuration to have impedance match is also important. In order to avoid the current leakage, the growth of a thin dielectric film between the electrode and the silicon sub-mount is necessary. We have established a 3ω measurement setup to measure the thermal conductivity of the dielectric film in order to find the best material for both electrical isolation and heat dissipation.
    On the other hand, the optical coupling between packaged laser and output fiber/waveguide is also challenging. We have fabricated input/output U-grooves to passively align the fiber to the optical output field. However, the uncertainty of bonded laser chip in vertical direction is the main roadblock. By designing the area ratio between the etched trenches and the solders, we have successfully reduced the bonding gap between the sub-mount and the laser chip, thus opening the possibility of the proposed platform for practical applications.

    目錄 摘要.............i Abstract........ii 致謝...........iii 表目錄..........ix 圖目錄...........x 第一章導論........1 1.1前言 ......................1 1.2半導體雷射封裝技術.........2 1.3基板散熱材料...............7 1.4晶圓接合技術..............11 1.5研究動機..................14 1.6論文架構..................14 第二章基本原理與技術.........15 2.1半導體雷射之原理與特性....15 2.1.1雷射原理與特性..........15 2.1.2熱對雷射之影響..........17 2.2 基板散熱原理.............22 2.2.1熱歐姆原理..............22 2.2.2散熱原理................24 2.3奈米碳管的原理與特性......28 2.3.1奈米碳管介紹............28 2.3.2奈米碳管特性............31 2.3.3奈米碳管成長方法........32 2.4 3ω薄膜量測原理..........35 2.4.1基本量測介紹............35 2.4.2 TCR值..................36 2.4.3薄膜介面溫度............36 2.4.4薄膜之導熱係數(kf)......39 2.4.5 3ω量測限制............39 第三章散熱基板結構設計與分析.40 3.1基板材料..................40 3.1.1溝槽蝕刻................40 3.2薄膜絕緣層材料............43 3.2.1奈米碳管散熱應用........43 3.2.2 SiC絕緣層材料..........46 3.2.3 3ω量測架構............47 3.3電極設計..................49 3.3.1 P電極朝下(P-side Down).49 3.3.2高速電極設計............49 3.3架構設計..................52 3.4結構分析模擬..............53 3.5熱傳導分析討論............56 3.4.1 SiO薄膜散熱基板傳熱模擬結果....56 3.4.2 SiC薄膜散熱基板傳熱模擬結果....59 3.4.3離子佈值基板傳熱模擬結果........60 3.4.3模擬結果討論............61 第四章基板製程...............63 4.1散熱基板材料選擇..........63 4.2基板光罩設計..............64 4.3製程步驟..................66 4.4 3ω量測製作..............77 4.5晶粒黏合技術..............80 4.6製程結果..................83 第五章結論...................94 5.1成果與結論................94 5.2 未來研究方向.............95 參考文獻.....................96 作者簡介....................101

    [1] 沈茂田, 雷射二極體模組殘留應力及潛變效應之研究, 碩士論文,國立中山大學,2001
    [2] 黃韋凱, 2.5-10Gb/s高速蝶式半導體雷射模組焊後位移之研究, 碩士論文, 國立中山大學,2003
    [3] 吳懿平, 金錫合金焊料的性能, 環球SMT與封裝,2008
    [4] http://www.icprotect.com.tw/articles-14.html, 璦司柏電子股份有限公司
    [5] 謝宗雍, 微電子材料與製程,中國材料科學學會, Chapter10-6, 2000
    [6] http://www.ledinside.com.tw/news_szhontron_led_20110926LED, 電子領域用陶瓷基板現狀與發展簡要分析,2011
    [7] http://www.icprotect.com.tw/articles-9.html, 2010新瓷器時代-LED陶瓷散熱方案,2010
    [8] 胡塵滌, 晶圓接合, 清華大學智慧材料與元件實驗室,2008
    [9] L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, John Wiley and Sons, NY(1995).
    [10] 盧廷昌, 王興宗, 半導體雷射導論, 五南圖書出版公司, 2008
    [11] 盧廷昌, 王興宗, 半導體雷射技術, 五南圖書出版公司, 2012
    [12] M.T. Furtado, “InGaAs/AlGaInAs/InP Laser with Compressively Strained Multiquantum Well Layers for High Speed Modulation Bandwidth”, Braz. J. Phys. vol. 27 n. 4 Sao Paulo Dec. 1997
    [13] 潘彥廷, Technologies for Realizing CWDM Laser Arrays, 博士論文, 國立台灣科技大學, 2008
    [14]張弘志, 熱傳導總論, 國立澎湖科技大學
    [15] 韋進全,張先鋒,王昆林, 奈米碳管巨觀體-物理化學特性與應用,五南圖書出版公司, pp.4, 2009
    [16] 馮榮豐,陳賜添, 奈米工程概論, 全華圖書股份有限公司,pp. 5-12,2009
    [17] S. Berber, Y. K. Kwon and D. Tomanek, “Unusually High Thermal Conductivity of Carbon Nanotubes” , Phys. Rev. Lett, vol 84, no. 20, 2000.
    [18] Vigolo, B. Penicaud, A. Coulon, C. Sauder, C. and Poulin, “Macroscopic fibers and ribbons of orient carbon nanotubes”, Science, 290, pp. 1331-1334, 2009.
    [19] 黃建盛, 奈米碳管簡介, 科學新天地, pp4~9,2004
    [20] 劉勇志, 3ω方法量測熱導係數之溫度效應, 國立清華大學, 2004
    [21] T. Yamane, N. Nagai, S. -I. Katayama and M. Todoki, “Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method” , Journal of Applied Physics, vol. 91, pp.9772-9776, 2002.
    [22] D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K:the 3ω method” , Review of Scientific Instruments, vol. 61, pp. 802–808,1990.
    [23] S. -M. Lee and David G. Cahill, “Heat transport in thin dielectric films”, Journal of Applied Physics, vol. 81, pp. 2590–2595, 1996.
    [24] S. Berber, Y. K. Kwon, and D. Tomanek, “ Unusually high thermal conductivity of carbon nanotubes”, Physical Review Letters, vol. 84, pp. 4613-4616, 2000.
    [25] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes”, Physical Review Letters, vol. 87, pp. 215502-215505, 2001.
    [26] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films”, Appl. Phys. Lett., vol.77, pp.666-668, 2000.
    [27] J. Xu and Timothy, “Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces”, Trans. components packag. Technol., vol.29, no.2, 2006.
    [28] K. Zhang, Y. Chai, M. M. F. Yuen, D. G. W. Xiao and P. C. H. Chan, “Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling”, Nanotechnology, vol.19, pp.215706-215714, 2008.
    [29] K. Miyake, M. Kusunoki, H. Usami, N. Umehara, and S. Sasaki,"Tribological Properties of Densely Packed Vertically Aligned CarbonNanotube Film on SiC Formed by Surface Decomposition", NANO LETTERS, Vol.7, No.11, 3285-3289
    [30] 陳思潔, Design and Fabrication of Silicon Submount with Aligned Carbon Nanotubes for LED Packaging, 碩士論文, 國立台灣科技大學, 2009
    [31] 黃俊傑, Design and Fabrocation of Silicon Substrate with Carbon Nanotubes for FPLaser Cooling, 碩士論文, 國立台灣科技大學, 2011
    [32] K. Miyake, M. Kusunoki, H. Usami, N. Umehara, andS. Sasaki, "Tribological Properties of Densely Packed Vertically Aligned CarbonNanotube Film on SiC Formed by Surface Decomposition", NANO LETTERS, Vol.7, No.11, 3285-3289
    [33] W. Norimatsu, C. Kawai and M. Kusunoki, "A Close-Packed-Carbon-Nanotube Film on SiC for Thermal Interface Material Applications", Electronic Properties of Carbon Nanotubes, ISBN: 978-953-307-499-3
    [34] B. -J. Li, C.-H. Chang', Y. -K. Su,"Application of Multi-wall Carbon Nanotube/SiC Composite to Thermal Dissipation of High-Bright Light Emitting Diode", IEEE , ISBN:978-1-4244-6694-8,2010
    [35]http://tupian.hudog.com/a0_22_13_010000000000011908131065422_jpg.html
    [36] C. P. Wen, “Coplanar waveguide: A surface strip transmission linesuitable for nonreciprocal gyromagnetic device application”, IEEE Trans. Microwave Theory Tech., vol. 17, pp. 1087-1090, Dec. 1969.
    [37] http://www.azom.com/article.aspx?ArticleID=3382

    無法下載圖示 全文公開日期 2017/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE