簡易檢索 / 詳目顯示

研究生: 蔡政舟
Cheng-Chou Tsai
論文名稱: 以超臨界流體快速膨脹法製備非固醇類抗發炎藥微粒之研究
Ultra-Fine Particles Preparation for Non-Steroidal Anti-Inflammatory Drugs with Rapid Expansion of Supercritical Solutions Method
指導教授: 林河木
Ho-mu Lin
李明哲
Ming-Jer Lee
口試委員: 李夢輝
none
李亮三
none
翁文爐
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 134
中文關鍵詞: 超臨界流體藥物微粒多晶型態
外文關鍵詞: supercritical fluid, ultra-fine particles, polymorphism
相關次數: 點閱:361下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究先探討四個氟化非固醇類抗發炎藥物(氟芬那酸(flufenamic acid)、來氟米特(Leflunomid)、尼氟密酸(niflumic acid)、希樂葆(celecoxib))在超臨界二氧化碳隨著接觸時間的長短的溶解情形,接著在足夠長的接觸時間下,利用一套半流動式的高壓相平衡的裝置,量測這四種非固醇類抗發炎藥物在超臨界二氧化碳中的平衡溶解度,量測溫度的範圍從313.2 K 到353.2 K,壓力最高到31 MPa。本研究也利用Peng-Robinson狀態方程式配合含二個參數的凡得瓦單一流體混合律來關聯飽和溶解度的數據,另外也分別用Chrastil與Mendez-Santiago Teja半經驗模式來關聯這些藥物的飽和溶解度作數據。本階段之研究目的在於量取這些非固醇類抗發炎藥物在超臨界二氧化碳中的溶解度,提供以超臨界流體快速膨脹法製備藥物微細化的製程開發所需之基本數據。
由於在四個非固醇類抗發炎藥標的物中,氟芬那酸具有最高的溶解度(高至莫耳分率為2.13×10-4),因此我們選擇氟芬那酸來進行以超臨界流體快速膨脹法製備此藥物微粒的研究,探討一些重要操作變數對氟芬那酸微粒的外觀形態,以及平均粒徑的影響,這些操作變數包括萃取溫度(Text)和壓力(Pext)、超臨界流體膨脹前的溫度(Tpre)、結晶槽溫度(Tcry)、毛細管內徑(Dnozzle)和長度(Lnozzle),以及粒子樣品收集板與毛細管出口之間的距離(Z)。實驗結果顯示藉由調控以上這些實驗的變數,我們可以成功製得超微粒的氟芬那酸粒子,其粒徑分佈範也很窄小。另外也發現經由臨界流體快速膨脹法所製得的氟芬那酸微粒,其結晶的型態由原來的晶型I 轉變為晶型III。
本研究也探討以超臨界流體快速膨脹法製備來氟米特藥物微粒之多晶型,有系統地觀察操作變數:萃取的溫度(Text)和壓力(Pext)、超臨界流體膨脹之前的溫度(Tpre)以及結晶槽的溫度(Tcry)對來氟米特微粒的結晶型態、粒子的外觀形態,以及粒子大小等的影響。實驗結果顯示調控超臨界流體快速膨脹法的操作條件,可分別製備出結晶型態I、結晶型態II和一種新發現的結晶型態IV的藥物微粒,所得到的結晶同時擁有奈米尺寸(小至約60 nm)且粒徑分佈狹窄。


In the present study, dissolution of four fluorinated and non-steroidal anti-inflammatory drugs (flufenamic acid (FFA), leflunomid (LEF), niflumic acid (NFA), and celecoxib (CCB)) with supercritical carbon dioxide was investigated over a wide range of contact time. After that, the saturated solubility data of these four non-steroidal anti-inflammatory drugs in supercritical carbon dioxide were measured under sufficient contact time with a semi-flow type phase equilibrium apparatus at temperatures ranging from 313.2 K to 353.2 K and pressures up to 31 MPa. The Peng-Robinson equation of state (PR EOS) with van der Waals one-fluid two parameters (vdW2) mixing rule was applied to correlate the solid-gas phase equilibria data of these four non-steroidal anti-inflammatory drugs in supercritical carbon dioxide. The new solubility data were also correlated with the Chrastil equation and the Mendez-Santiago and Teja model over the entire experimental conditions. The main objective of this study is to obtain the fundamental solubility data and developing the micronization process of the pharmaceutical compounds with rapid expansion of supercritical solutions (RESS) technique.Because FFA has the highest solubility among the four investigated drugs in supercritical carbon dioxide (up to 2.13×10-4 in mole fraction), micronization of FFA by the RESS method was studied. The influences of various process variables on the morphology and the mean size of the resultant particles were explored experimentally. These process variables include extraction temperature (Text), extraction pressure (Pext), pre-expansion temperature (Tpre), crystallization temperature (Tcry), inside diameter of capillary tube (Dnozzle), length of capillary tube (Lnozzle), and spraying distance (Z). As evidence form the experimental results, by manipulation of these process conditions, ultra-fine particles with a narrow particle size distribution of FFA are successfully prepared through the RESS technique. Additionally, the polymorphism of FFA particles converted from the original Form I into Form III after the RESS processing.
Studying the polymorphs preparation of LEF particles through the RESS crystallization process was also made. The effects of various process variables, including extraction temperature (Text) and pressure (Pext), pre-expansion temperature (Tpre), and crystallization temperature (Tcry), on the polymorphism, the morphology, and the mean size of the resultant particles were observed systematically. As evidence from experimental results, polymorphs I, II and a new form IV of LEF can be generated from the RESS processing by manipulation of the operating conditions. Additionally, the produced LEF particles are in nano scale (around 60 nm) with narrow size distribution.

Table of Contents English Abstract I Chinese Abstract III Acknowledgments V Table of Contents VI List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 Pharmaceutical industry 1 1.2 Supercritical fluid properties 5 1.3 Supercritical fluid microniztion techniques 6 1.3.1 Particle formation using supercritical fluid as a solvent 6 1.3.2 Particle formation using supercritical fluid as an anti-solvent 8 1.4 The importance of solubility in supercritical fluid 9 1.5 CO2-philic compounds 10 1.5.1 Fluorinated CO2 –philes 11 1.5.2 Nonfluorous CO2 –philes 13 1.6 Outline of this dessertation 15 Chapter 2 Solubility of fluorinated NSAIDs in SC-CO2 22 2.1 Experimental method 24 2.1.1 Materials 24 2.1.2 Apparatus and procedures 25 2.1.3 Composition analysis 27 2.2 Results and discussion 27 2.2.1 Extraction of drugs at different lengths of contact time 28 2.2.2 Equilibrium solubility 29 2.2.2.1 Effect of pressure 29 2.2.2.2 Crossover phenomena 30 2.2.2.3 Effect of intermolecular interactions 31 2.3 Correlation of saturated solubility data 32 2.3.1 Peng-Robinson equation of state 32 2.3.2 Empirical models 35 2.4 Conclusions 37 Chapter 3 Micronization of FFA by RESS method 66 3.1 Experimental method 66 3.1.1 Apparatus and procedures 67 3.1.2 Characterization 68 3.2 Effect of process variables on particle morphology 69 3.2.1 Effect of extraction pressure on particle morphology 70 3.2.2 Effect of pre-expansion and crystallization temperature on particle morphology 71 3.2.3 Effect of inside diameter and length of capillary tube on particle morphology 72 3.2.4 Effect of extraction temperature and spraying distance 73 3.3 Characterization of FFA particles from FTIR and DSC complementarily 73 3.4 Conclusions 74 Chapter 4 LEF Polymorphs Preparation with RESS Crystallization method 85 4.1 Polymorphism 85 4.1.1 Thermodynamic and kinetic aspects of polymorphism 86 4.1.1.1 Enantiotropy and monotropy 87 4.1.1.2 Kinetic factors 88 4.1.2 Methods for the characterization of polymorphs 88 4.1.3 The importance of polymorphism in pharmaceutical substances 89 4.1.4 New polymorphs detection in pharmaceutical industry 89 4.2 Crystallization method 90 4.2.1 Conventional crystallization method 91 4.2.2 Novel RESS crystallization method 91 4.3 Crystallization of LEF from RESS method 92 4.3.1 Apparatus and procedures 93 4.3.2 Materials 93 4.3.3 Crystallization of LEF particles 94 4.3.3.1 Scanning electron microscopy 94 4.3.3.2 X-ray powder diffraction 94 4.3.3.3 Differential scanning calorimeter 94 4.3.3.4 UV/visible absorbance 95 4.4 Results and discussions 95 4.4.1 Characterization of LEF polymorphic forms from XRPD and DSC 95 4.4.2 Comparison of saturated solubility between LEF polymorphs in pure water 97 4.4.3 Effects of RESS operating conditions on particle morphology 98 4.4.3.1 Effects of extraction temperature 99 4.4.3.2 Effects of extraction pressure 99 4.4.3.3 Effects of pre-expansion temperature 100 4.4.3.4 Effects of crystallization temperature 101 4.5 Conclusions 102 Chapter 5 Conclusions 115 Nomenclatures 118 References 121 作者簡介 135

References
[1] M.E. Matteucci, M.A. Hotze, K.P. Johnston, R.O. Williams III, Drug nanoparticles by antisolvent precipitation: Mixing energy versus surfactant stabilization, Langmuir 22 (2006) 8951–¬¬¬¬8959.
[2] M. Perrut, Supercritical fluids applications in the pharmaceutical industry, STP Pharm. Sci. 13 (2003) 83–¬91.
[3] C. Valder, D. Merrifield, Pharmaceutical technology, SmithKline Beecham R&D News 32 (1996) p. 1.
[4] J.C. Chaumeil, Micronisation: a method of improving the bioavailability of poorly soluble drugs, Methods Find. Exp. Clin. Pharmacol. 20 (1998) 211–¬215.
[5] A.A. Noyes, W.R. Whitney, The rate of solution of solid substances in their own solutions, J. Am. Chem. Soc. 19 (1897) 930–934.
[6] J. Hu, K.P. Johnston, R.O. Williams III, Nanoparticle engineering process for enhancing the dissolution rates of poorly water soluble drugs, Drug Dev. Ind. Pharm. 30 (2004) 233–245.
[7] M. Perrut, J. Jung, F. Leboeuf, Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes Part I: Micronization of neat particles, Int. J. Pharm. 288 (2005) 3–¬10.
[8] B.Yu. Shekunov, P. York, Crystallization process in pharmaceutical technology and drug delivery design, J. Cryst. Growth 211 (2000) 122–¬136.
[9] R. Adhiyaman, S.K. Basu, Crystal modification of dipyridamole using different solvents and crystallization conditions, Int. J. Pharm. 321 (2006) 27–34.
[10] A.H.L. Chow, C.K. Hsia, J.D. Gordon, J.W.M. Young, E.I. Vargha-Butler, Assessment of wettability and its relationship to the intrinsic dissolution rate of doped phenytoin crystals, Int. J. Pharm. 126 (1995) 21–28.
[11] A. Tandya, F. Dehghani, N.R. Foster, Micronization of cyclosporine using dense gas techniques, J. Supercrit. Fluids 37 (2006) 272–¬278.
[12] H.G. Brittain, Polymorphism in pharmaceutical solids, Marcel Dekker, New York, 1999.
[13] T.L. Rogers, K.P. Johnston, R.O. Williams III, Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies, Drug Dev. Ind. Pharm. 27 (2001) 1003–1015.
[14] J. Fages, H. Lochard, J.J. Letourneau, M. Sauceau, E. Rodier, Particle generation for pharmaceutical applications using supercritical fluid technology, Powder Technol. 141 (2004) 219–226.
[15] J. Jung, M. Perrut, Particle design using supercritical fluids: Literature and patent survey, J. Supercrit. Fluids 20 (2001) 179–¬219.
[16] E. Reverchon, I. De Marco, Supercritical fluid extraction and fractionation of natural matter, J. Supercrit. Fluids 38 (2006) 146–166.
[17] M. Perrut, J. Jung, F. Leboeuf, Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes Part II: Preparation of composite particles, Int. J. Pharm. 288 (2005) 11–16.
[18] K. Gong, J.A. Darr, I.U. Rehman, Supercritical fluid assisted impregnation of indomethacin into chitosan thermosets for controlled release applications, Int. J. Pharm. 315 (2006) 93–98.
[19] S. Wang, F. Kienzle, The synthesis of pharmaceutical intermediates in supercritical fluids, Ind. Eng. Chem. Res. 39 (2000) 4487–4490.
[20] D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of instrumental analysis, 5th ed., Saunders College Publishing 769 (1997).
[21] R.C. Reid, J.M. Prausnitz, B.E. Poling, The properties of gases and liquids, 4th ed., McGraw-Hill, New York (1987).
[22] J.W. Tom, P.G. Debenedetti, Particle formation with supercritical fluids, J. Aerosol Sci. 22 (1991) 555–584.
[23] B. Subramaniam, R.A. Rajewski, K. Snavely, Pharmaceutical processing with supercritical carbon dioxide, J. Pharm. Sci. 86 (1997) 885–890.
[24] V. Krukonis, Supercritical fluid nucleation of difficult to comminute solids, Presented at the AIChE annual meeting, San Francisco, 1984.
[25] D.W. Matson, J.L. Fulton, R.C. Peterson, R.D. Smith, Rapid expansion of supercritical fluid solutions: Solute formation of powder, thin film, and fibers, Ind. Eng. Chem. Res. 26 (1987) 2298–2306.
[26] P. York, U.B. Kompella, B.Y. Shekunov, Supercritical fluid technology for drug product development, Marcel Dekker, New York, 2004.
[27] M. Charoenchaitrakool, F. Dehghani, N.R. Foster, H.K. Chan, Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals, Ind. Eng. Chem. Res. 39 (2000) 4794–4802.
[28] M. Türk, P. Hils, B. Helfgen, K. Schaber, H.J. Martin, M.A. Wahl, Micronization of pharmaceutical substances by rapid expansion of supercritical solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents, J. Supercrit. Fluids 22 (2002) 75–84.
[29] E. Reverchon, P. Pallado, Hydrodynamic modeling of the RESS process, J. Supercrit. Fluids 9 (1996) 216–¬221.
[30] B. Helfgen, P. Hils, Ch. Holzknecht, M. Türk, K. Schaber, Simulation of particle formation during the rapid expansion of supercritical solutions, J. Aerosol Sci. 32 (2001) 295–¬319.
[31] M. Weber, M.C. Thies, A simplified and generalized model for the rapid expansion of supercritical solutions, J. Supercrit. Fluids 40 (2007) 402–¬419.
[32] T.J. Young, S.M. Mawson, K.P. Johnston, Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs, Biotechnol. Prog. 16 (2000) 402–407.
[33] T.J. Young, K.P. Johnston, G.W. Pace, A.K. Mishra, Phospholipid-stabilized nanoparticles of cyclosporine A by rapid expansion from supercritical to aqueous solution, AAPS Pharm. Sci. Tech. 5 (2003) E11.
[34] M. Türk, R. Lietzow, Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution, AAPS Pharm. Sci. Tech. 5 (2004) E56.
[35] P. Pathak, M.J. Meziani, T. Desai, Y.P. Sun, Nanosizing drug particles in supercritical fluid processing, J. Am. Chem. Soc. 126 (2004) 10842–10843.
[36] P.M. Gallagher, M.P. Coffey, V.J. Krukonis, N. Klasutis, In supercritical science and technology, ACS symposium series 406; K.P. Johnston, J.M. Penninger, Eds.; American chemical society: Washington, D.C., (1989) 334–354.
[37] D.J. Dixon, K.P. Johnston, R.A. Bodmeier, Polymeric materials formed by precipitation with a compressed fluid antisolvent, AIChE J. 39 (1993) 127–139.
[38] S.D. Yeo, P.G. Debenedetti, M. Radosz, H.W. Schmidt, Supercritical antisolvent process for substituted para-linked aromatic polyamides: phase equilibrium and morphology study, Macromolecules 26 (1993) 6207–6210.
[39] M. Perrut, J.Y. Clavier, Supercritical fluid formulation: Process choice and scale-up, Ind. Eng. Chem. Res. 42 (2003) 6375–6383.
[40] A. Iezzi, P. Bendale, R.M. Enick, M. Turber, J. Brady, Gel formation in carbon dioxide-semifluorinated alkane mixtures and phase equilibria of carbon dioxide-perfluorinated alkane mixture, Fluid Phase Equilib. 52 (1989) 307–317.
[41] K.A. Consani, R.D. Smith, Observations on the solubility of surfactants and related molecules in carbon dioxide at 50℃, J. Supercrit. Fluids 3 (1990) 51–65.
[42] T. Hoefling, D. Stofesky, M. Reid, E. Beckman, R.M. Enick, The incorporation of a fluorinated ether functionality into a polymer or surfactant to enhance CO2-solubility, J. Supercrit. Fluids 5 (1992) 237–241.
[43] D.A. Newman, T.A. Hoefling, R.R. Beitle, E.J. Beckman, R.M. Enick, Phase behavior of fluoroether-functional amphiphiles in supercritical carbon dioxide, J. Supercrit. Fluids 6 (1993) 205–210.
[44] A. Dardin, J.B. Cain, J.M. DeSimone, C.S. Johnson Jr., E.T. Samulski, High-pressure NMR of polymers dissolved in supercritical carbon dioxide, Macromolecules 30 (1997) 3593–3599.
[45] A. Dardin, J.M. DeSimone, E.T. Samulski, Fluorocarbons dissolved in supercritical carbon dioxide. NMR evidence for specific solute-solvent interactions, J. Phys. Chem. B 102 (1998) 1775–1780.
[46] A. Cece, S.H. Jureller, J.L. Kerschner, K.F. Moschner, Molecular modeling approach for contrasting the interaction of ethane and hexafluoroethane with carbon dioxide, J. Phys. Chem. 100 (1996) 7435–7439.
[47] P. Raveendran, S.L. Wallen, Exploring CO2-philicity: Effects of stepwise fluorination, J. Phys. Chem. B 107 (2003) 1473–1477.
[48] M.A. McHugh, I.H. Park, J.J. Reisinger, Y. Ren, T.P. Lodge, M.A. Hillmyer, Solubility of CF2-modified polybutadiene and polyisoprene in supercritical carbon dioxide, Macromolecules 35 (2002) 4653–4657.
[49] S.G. Kazarian, M.F. Vincent, F.V. Bright, C.L. Liotta, C.A. Eckert, Specific intermolecular interaction of carbon dioxide with polymers, J. Am. Chem. Soc. 118 (1996) 1729–1736.
[50] J.C. Meredith, K.P. Johnston, J.M. Seminario, S.G. Kazarian, C.A. Eckert, Quantitative equilibrium constants between CO2 and Lewis bases from FTIR spectroscopy, J. Phys. Chem. 100 (1996) 10837–10848.
[51] R. Fink, D. Hancu, R. Valentine, E.J. Beckman, Toward the development of “CO2-philic” hydrocarbons. 1. Use of side-chain functionalization to lower the miscibility pressure of polydimethylsiloxanes in CO2, J. Phys. Chem. B 103 (1999) 6441–6444.
[52] P. Raveendran, S.L. Wallen, Sugar acetates as novel, renewable CO2-philes, J. Am. Chem. Soc. 124 (2002) 7273–7275.
[53] P. Lalanne, S. Rey, F. Cansell, T. Tassaing, M. Besnard, Attempt to explain the changes in salvation of polystyrene in supercritical CO2/ethane mixtures using infrared and Raman spectroscopy, J. Supercrit. Fluids 19 (2001) 199–207.
[54] P. Raveendran, S.L. Wallen, Cooperative C–H…O hydrogen bonding in CO2–Lewis base complexes: Implications for salvation in supercritical CO2, J. Am. Chem. Soc. 124 (2002) 12590–12599.
[55] M.A. Blatchford, P. Raveendran, S.L. Wallen, Spectroscopic studies of model carbonyl compounds in CO2: evidence for cooperative C–H…O interactions, J. Phys. Chem. A 107 (2003) 10311–10323.
[56] D.B. Fournier, G.B. Gordon, COX-2 and colon cancer: Potential targets for chemoprevention, J. Cell. Biochem. Suppl. 34 (2000) 97–102.
[57] D.O. Thompson, Cyclodextrins – Enabling excipients: Their present and future use in pharmaceuticals, Crit. Rev. Ther. Drug Carrier Syst. 14 (1997) 1–104.
[58] S. Romero, B. Escalera, P. Bustamante, Solubility behavior of polymorphs I and II of mefenamic acid in solvent mixtures, Int. J. Pharm. 178 (1999) 193–202.
[59] J.R. Vane, R.M. Botting, Mechanism of action of nonsteroidal anti-inflammatory drugs, Am. J. Med. 104 (1998) 2S–8S.
[60] G.S. Geis, Update on clinical developments with celecoxib, a new specific COX-2 inhibitor: What can we expect? Scand. J. Rheumatol. Suppl. 109 (1999) 31–37.
[61] N.J. Olsen, C.M. Stein, New drugs for rheumatoid arthritis, N. Engl. J. Med. 350 (2004) 2167–2179.
[62] D.Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15 (1976) 59–64.
[63] J. Chrastil, Solubility of solids and liquid in supercritical gases, J. Phys. Chem. 86 (1982) 3016–3021.
[64] J. Mendez-Santiago, A.S. Teja, The solubility of solids in supercritical fluids, Fluid Phase Equilib. 158-160 (1999) 501–510.
[65] G.M. Wilson, L.V. Jasperson, AIChE Spring Meeting, New Orleans, LA, 1996.
[66] B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, fifth ed., McGraw-Hill, New York, 2001.
[67] ChemSpider-Database of chemical structures and property predictions, (http://www.chemspider.com/).
[68] G.L. Perlovich, A.O. Surov, A. Bauer-Brandl, Thermodynamic properties of flufenamic and niflumic acids–Specific and non-specific interactions in solution and in crystal lattices, mechanism of salvation , partition and distribution, J. Pharm. Biomed. Anal. 45 (2007) 679–687.
[69] D. Mackay, A. Bobra, D. W. Chan, W. Y. Shlu, Vapor pressure correlations for low-volatility environmental chemicals, Environ. Sci. Technol. 16 (1982) 645–649.
[70] B.I. Lee, M.G. Kesler, A generalized thermodynamic correlation based on three-parameter corresponding states, AIChE J. 21 (1975) 510-521.
[71] A. Immirzi, B. Perini, Prediction of density in organic crystals, Acta Cryst. A33 (1977) 216–218.
[72] Isothermal properties for carbon dioxide, NIST Chemistry WebBook, NIST Standard Reference Database No. 69 - June, 2005, Release, National Institute of Standards and Technology, USA (http://webbook.nist.gov/chemistry/).
[73] K.P. Johnston, C.A. Eckert, An analytical Carnahan-Starling-van der Waals model for solubility of hydrocarbon solids in supercritical fluids, AIChE J. 27 (1981) 773–779.
[74] J.M. Wong, K.P. Johnston, Solubilization of biomolecules in carbon dioxide based supercritical fluids, Biotechnol. Prog. 2 (1986) 29–39.
[75] N.R. Foster, G.S. Gurdial, J.S.L. Yun, K.K. Liong, K.D. Tilly, S.S.T. Ting, H. Singth, J.H. Lee, Significance of the crossover pressure in solid-supercritical fluid phase equilibria, Ind. Eng. Chem. Res. 30 (1991) 1955–1964.
[76] T. Shinoda, K. Tamura, Solubilities of C.I. disperse orange 25 and C.I. disperse blue 354 in supercritical carbon dioxide, J. Chem. Eng. Data 48 (2003) 869–873.
[77] M. Sauceau, J.J. Letourneau, B. Freiss, D. Richon, J. Fages, Solubility of eflucimibe in supercritical carbon dioxide with or without a co-solvent, J. Supercrit. Fluids 31 (2004) 133–140.
[78] R.F. Fedors, A method for estimating both the solubility parameters and molar volumes of liquids, Polym. Eng. Sci. 14 (1974) 147–154.
[79] M.L. O’Neill, Q. Cao, M. Fang, K.P. Johnston, S.P. Wilkinson, C.D. Smith, J.L. Kerschner, S.H. Jureller, Solubility of homopolymers and copolymers in carbon dioxide, Ind. Eng. Chem. Res. 37 (1998) 3067–3079.
[80] J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, third ed., Prentice Hall, New Jersey, 1999.
[81] M. Kuhnert-Brandstätter, L. Borka, G. Friedrich-Sander, Polymorphism of drugs: Flufenamic acid and BL 191, Arch. Pharm. 307 (1974) 845–853.
[82] R.K. Gilpin, W. Zhou, Infrared studies of the polymorphic states of the fenamates, J. Pharm. Biomed. Anal. 37 (2005) 509–515.
[83] A. Burger, R. Ramberger, Thermodynamic relationships between polymorphic modifications: Flufenamic acid and Mefenamic acid, Microchim. Acta Ⅰ (1980) 17–28.
[84] J. Krc Jr., Crystallographic properties of flufenamic acid, Microscope 25 (1977) 31–45.
[85] R. Hilfiker, Polymorphism in pharmaceutical industry, Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, 2006.
[86] J.J. Novoa, D. Braga, L. Addadi, Engineering of crystalline materials properties, Springer Verlag, Netherlands, (2008) 87–109.
[87] A. Burger, R. Ramberger, On the polymorphism of pharmaceutical and other molecular crystals. I Theory of thermodynamic rules, Mikrochim. Acta [Wien], II (1979) 259–271.
[88] T.L. Threlfall, Analysis of organic polymorphs, Analyst 120 (1995) 2435–2460.
[89] W. Cabri, P. Ghetti, G. Pozzi, M. Alpegiani, Polymorphisms and patent, marker, and legal battles: cefdinir case study, Org. Process Res. Dev. 11 (2007) 64–72.
[90] N. Blagden, M. de Matas, P.T. Gavan, P. York, Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, Adv. Drug Deliv. Rev. 59 (2007) 617–630.
[91] I. Pasquali, R. Bettini, F. Giordano, Supercritical fluid technologies: An innovative approach for manipulating the solid-state of pharmaceuticals, Adv. Drug Deliv. Rev. 60 (2008) 399–410.
[92] C. Vemavarapu, M.J. Mollan, T.E. Needham, Crystal doping aided by rapid expansion of supercritical solutions, AAPS Pharm. Sci. Tech. 3 (2002) 1–15.
[93] P.M. Gosselin, R. Thibert, M. Preda, J.N. McMullen, Polymorphic properties of micronized carbamazepine produced by RESS, Int. J. Pharm. 252 (2003) 225–233.
[94] K. Moribe, S.I. Tsutsumi, S. Morishita, H. Shinozaki, Y. Tozuka, T. Oguchi, K. Yamamoto, Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution, Chem. Pharm. Bull. 53 (2005) 1025–1028.
[95] H. Shinozaki, T. Oguchi, S. Suzuki, K. Aoki, T. Sako, S. Morishita, Y. Tozuka, K. Moribe, K. Yamamoto, Micronization and polymorphic conversion of tolbutamide and barbital by rapid expansion of supercritical solutions, Drug Dev. Ind. Pharm. 32 (2006) 877–891.
[96] J. Chingunpitak, S. Puttipipatkhachorn, Y. Tozuka, K. Moribe, K. Yamamoto, Micronization of dihydroartemisinin by rapid expansion of supercritical solutions, Drug Dev. Ind. Pharm. 34 (2008) 609–617.
[97] H. Faaschi, U. Hedtmann, U. Westenfleder, E. Paulus, Crystal form of N-(4-trifluoromethylphenyl)-5-methylisoxazole-4-carboxamide, AU Patent, 199878870 A1.
[98] I. Avrutov, N. Gershon, J. Aronhime, Process for preparing leflunomide form I, US Patent, 6,806,373 B2.
[99] D. Vega, A. Petragalli, D. Fernandez, J.A. Ellena, Polymorphism on leflunomide: stability and crystal structures, J. Pharm. Sci. 95 (2006) 1075–1083.
[100] D. Giron, Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates, Thermochim. Acta 248 (1995) 1–59.

QR CODE