簡易檢索 / 詳目顯示

研究生: 陳毅修
Yi-Shou Chen
論文名稱: 加勁擋土牆側向承載力與破壞機制研究
Finite Element Study on Lateral Bearing Capacity and Failure Mode of Geosynthetic-Reinforced Soil Barriers
指導教授: 楊國鑫
Kuo-Hsin, Yang
口試委員: 歐章煜
Chang-Yu Ou
劉家男
Jia-Nan Liou
洪汶宜
Wen-Yi Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 140
中文關鍵詞: GRS 壁壘有限元素數值分析側向承載力破壞模式
外文關鍵詞: Geosynthetic-reinforced soil barriers, Finite element, Lateral bearing capacity, Failure mode
相關次數: 點閱:206下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 加勁擋土結構物除了能夠承受垂直的荷載之外,近年來也逐漸被用來抵抗側向自然破壞力,如洪水、海嘯、土石流及雪崩等。加勁擋土結構之外部穩定性分析如一般常規重力式擋土結構物的穩定性檢核,視加勁區域為剛體,然而這與柔性的加勁擋土牆性質不符,因此本研究以PLAXIS 有限元素法數值軟體進行分析,目的為探討加勁擋土壁壘(GRS barriers)受側向力後的力學機制與破壞模式,再以參數分析的方式找出影響GRS壁壘側向承載力的關鍵因子。研究結果發現牆體受側向力之後,其牆內應力也呈現撓曲應力的增減方式,牆體的背力側發展出一般擋土牆受到垂直力後牆面向外變形所引起的主動破壞,而牆體受力側產生界面滑動破壞。參數分析研究結果發現,對於GRS壁壘側向承載力的關鍵影響因子為寬高比(L/H),且寬高比的變化會使得破壞模式也不同,寬高比為L/H=0.5~1之間,其破壞模式控制再牆體之主動與界面破壞,而寬高比為L/H=1~3之間控制在底部滑動破壞,而寬高比大於3之後,其破壞控制在擋土牆之被動破壞。


    Geosynthetic-reinforced soil (GRS) structures are often used to carry vertical surcharges. Recently, GRS structures have been applied as barriers to resist lateral force from natural disasters such as flood, tsunami, rock fall, debris flow, and avalanche. In design guideline, the stability of such structures is often evaluated by conducting the conventional external stability analyses assuming the reinforced soil mass as a rigid body. However, the assumption of rigid body contradicts with the flexible nature of reinforced soil. In this study, finite element (FE) models of back-to-back GRS walls were developed to investigate the failure mode and lateral bearing capacity of GRS barriers subjected to lateral loadings. The FE result showed GRS barriers generated bending deformation when subjected to lateral force. As a result, the vertical stress at the side of wall subjected to lateral force decreased due to the bending deformation induced tension stress. On the other hand, the vertical stress at the opposite side increased because of the bending deformation induced compression stress. The failure mode depended on the aspect ratio of GRS barriers L/H (ratio of wall width to wall height). When 0.5 < L/H < 1, the GRS barriers subjected to lateral loading failed internally. Due to the development of bending stress, the GRS barriers failed due to the internal sliding along the soil-reinforcement interface at the side subjected to the lateral force and meanwhile the active failure of reinforced soil wedge at the opposite side. When 1.0 < L/H < 3.0, sliding failure at the bottom of GRS barriers occurred. When L/H > 3.0, the passive soil failure occurred within GRS barriers at the side subjected to the lateral force. The parametric study results indicated the major factor to affect the ultimate lateral bearing capacity was the aspect ratio of GRS barriers. As L/H increases, the lateral bearing capacity of GRS structures increased from approximately twice of active lateral earth pressure at L/H = 0.5 to the passive lateral earth pressure at L/H = 3.0.

    摘要 i Abstract iii 誌謝 v 目錄 vii 圖目錄 ix 表目錄 xiii 符號索引 xiv 第一章 緒論 1 1.1. 前言 1 1.1. 研究動機與目的 2 1.2. 研究方法 7 1.3. 論文架構 8 第二章 文獻回顧 11 2.1. 加勁擋土牆之穩定性 11 2.1.1. 加勁擋土結構物之外部穩定 12 2.1.2. 加勁擋土結構物之內部穩定 16 2.2. 加勁擋土牆受側推力之相關研究 18 2.2.1. Khalizad and Gabr (2011) 18 2.2.2. Ronco et al. (2009) 19 2.3. 數值分析於加勁擋土牆之應用 20 2.3.1. Karpurapu and Bathurst (1995) 21 2.3.2. Han and Leshchinsky (2010) 22 2.3.3. Hatami and Bathurst (2005) 23 第三章 有限元素法分析 25 3.1. 物理模型 25 3.2. 數值之分析方法 34 3.2.1. 分析模式 34 3.2.2. 硬化土壤模型 35 3.2.3. 加勁材之模擬 42 3.2.4. 界面元素 43 3.3. 數值模型驗證 46 3.3.1. 土壤材料參數校正 46 3.3.2. 加勁材之應變速率 49 3.3.3. 足尺寸加勁擋土牆數值校正 51 3.4. GRS壁壘受側向推力之力學機制與破壞模式 56 3.4.1. 基準模型建立 56 3.4.2. 力學機制與破壞模式 61 第四章 參數分析與討論 78 4.1. 參數分析說明 78 4.2. 土壤材料性質之影響 80 4.2.1. 土壤剪力強度 80 4.2.2. 土壤變形模數 84 4.2.3. 土壤單位重 86 4.3. 加勁材性質之影響 90 4.3.1. 加勁材張力強度 90 4.3.2. 加勁材勁度 91 4.3.3. 土壤與加勁材間之界面剪力強度 97 4.4. 幾何配置變化之影響 105 4.4.1. 寬高比 105 4.4.2. 加勁材間距 113 4.4.3. 牆面板類型 117 4.5. 參數敏感度分析 122 4.6. 案例分析 124 第五章 結論與建議 136 5.1. 結論 136 5.2. 建議 137 參考文獻 138

    Arnason. (2005). "Interactions between and Incident Bore and a Free-Standing Coastal Structure", Ph.D. Dissertation. University of Washington.
    Bathurst, R.J., Nernheim, A., Walters, D.L., Allen, T.M., Burgess, P. and Saunders, D.D. (2009). "Influence of reinforcement stiffness and compaction on the performance of four geosynthetic-reinforced soil walls". Geosynthetics International, Vol.16(1), pp. 43-59.
    Boyle, S.R., Gallagher, M. and Holtz, R.D. (1996). "Influence of Strain Rate, Specimen Length and Confinement on Measured Geotextile Properties”. Geosynthetics International, Vol.3(2), pp. 205-222.
    Brandl, H. (2011). "Geosynthetics applications for the mitigation of natural disasters and for environmental protection". Geosynthetics International, Vol.18(6), pp. 340-390.
    Duncan, J.M. and Chang, C.Y. (1970). "Nonlinear analysis of stress and strain in soil". Journal of The Soil Mechanics and Foundations Division, Vol.96(5), pp. 1629-1653.
    Elias, V., Christopher, B.R. and Berg, R.R. (2001). "Mechanically Stabilized Earth Walls And Reinforced Soil Slopes Design and Construction Guidelines" Report No. FHWA-NHI-00-043. National Highway Institute. Washington: Federal Highway Administration.
    FEMA. (2006). "Guidelines for Design of Structures for Vertical Evacuation from Tsunamis",FEMA 361 Report. Federal Emergency Management Agency, Washington, D.C.
    Han, J. and Leshchinsky, D. (2010). "Analysis of back-to-back mechanically stabilized earth walls". Geotextiles and Geomembranes, Vol.28, pp. 262-267.
    Hatami, K. and Bathurst R.J. (2005). "Development and Verification of a Numerical Model for the Analysis of Geosynthetic-Reinforced Soil Segmental Walls under Working Stress Conditions”. Canadian Geotech Journal, Vol.67(4), pp. 1066-1085.
    Hatami, K. and Bathurst, R.J. (2006). "Numerical Model for Reinforced Soil Segmental Walls under Surcharge Loading". Journal of Geotechnical and Geoenvironmental Engineering, Vol.132(6), pp. 673-684.
    Hong, Y.-S., Wu, C.-S. (2013). "The Performance of A Sand Column Internally Reinforced with Horizontal Reinforcement Layers". Geotextiles and Geomembranes, Vol. 41, pp. 36-49.
    Huang, C.-C. and Y.-S. Chen. (n.d.). "Behaviour of reinforced structures under simulated toe scouring". Geosynthetics International, Vol.19(4), pp. 272-283.
    Karpurapu, R. and Bathurst, R.J. (1995). "Behaviour of Geosynthetic Reinforced Soil Retaining Walls Using The Finite Element Method". Computer and Geotechnics, Vol.17, pp. 279-299.
    Khalilzad, M., Gabr, M.A. (2011). "External Stability of Geotubes Subjected to Wave Loading". Geo-Risk 2011, (pp. 1044-1054).
    Kondner, R.L. and Zelasko, J.S. (1963). "A hyperbolic stress-strain Resoinse: Cohesive soils". Journal of The Soil Mechanics and Foundations Division, Vol.89(SM1), pp. 115-143.
    Kuwano, J., Koseki, J. and Miyata, Y. (2012). "Performance of reinforced soil walls in the 2011 Tohoku Earthquake". Proc. 5th Asian Regional Conference on Geosynthetics, (pp. 85-94). Bangkok, Thailand.
    Leshchinsky, D. and Han, J. (2004). "Geosynthetic Reinforced Multitiered Walls". Journal of Geotechnical and Geoenvironmental Engineering, Vol.130(12), pp. 1225-1235.
    Pham, T.Q. (2009). "Investigating Composite Behavior of Geosynthetic-Reinforced Soil (GRS) Mass" Ph.D Dissertation. University of Colorado Denver.
    PLAXIS, B.V. (2005). "Plaxis 2D-Version 8 Manual". Balkema, Rotterfam, The Netherlands.
    Ronco, C., Oggeri, C. and Peola, D. (2009). "Design of reinforced ground embankments used for rockfall protection". Natural Hazards and Earth System Sciences, 9(4), pp. 1189-1199.
    Schanz, T., Vermer, P.A. and Bonnier, P.G. (1999). "The Hardening Soil Model: Formulation and Verification". Beyond 2000 in Computational Geotechnics, (pp. 108-120). Balkema, Rotterdam.
    Tatsuoka, F., Tateyama, M., Koseki J. and Yonezawa T. (2013). "Recent Geosynthetic-Reinforced Soil Structures for Railways in Japan". Proc. 15th the Conference on Current Researches in Geotechnical Engineering in Taiwan, (pp. 32-52). Taiwan.
    Yah, H. (2007). "Design Tsunami Forces for Onshore Structures". Journal of Disaster Research, Vol.2(6), pp. 531-536.
    中華水土保持學會. (2005). "水土保持手冊-工程方法篇". 行政院農業委員會水土保持局.

    QR CODE