簡易檢索 / 詳目顯示

研究生: 馬弘諺
Hung-Yen Ma
論文名稱: 利用Hadamard/Companding轉換與相位轉向技術結合預扭器之效能分析
Performance Analysis of Using Hadamard/Companding Transform and Combination of Phase Reversal and Predistorter
指導教授: 張立中
Li-Chung Chang
口試委員: 曾恕銘
Shu-Ming Tseng
曾德峰
Der-Feng Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: 記憶性多項式預扭器間接學習架構直接學習架構相位轉向技術正交分頻多工峰均功率比
外文關鍵詞: MPPD, DL, IDL, phase reversal, PAPR, OFDM
相關次數: 點閱:508下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

正交分頻多工系統具有高的頻寬效率,且能夠對抗多重路徑衰減干擾的優點;其主要的缺點為具有高的峰值平均功率比 (peak to average power ratio, PAPR),由於高的峰均值功率比,使得經過功率放大器(power amplifier,PA)的訊號,受到放大器操作點的影響而被截掉,引起失真。然而,數位預扭器 (digital predistorter, DPD) 能夠有效線性化放大器以提升功率效益,此外,當信號經過非線性放大器時,其輸出會有頻譜再生的現象,而造成鄰近通道的干擾,因此,線性化功率放大器降低位元錯誤率的同時,也必須能夠抑制頻譜再生。為了能夠有效的解決這些問題,降低峰均功率比以及功率放大器的線性化等技術便成為現今研究的課題。在本篇論文中,以相位轉向技術(phase reversal, PR)作基礎,延伸出三種改進的方法,其一是延展相位轉向技術(Extended PR),其二是反覆相位轉向技術(Iterative PR),其三把這兩項優點合併起來為結合延展及反覆相位轉向技術(Combined PR),接著,我們將在有無旁資訊的情況下,提出將這四種技術結合Hadamard 轉換和Companding技術,可以改善PAPR效能,會有加成的效果,壓縮因子 愈大PAPR改善愈多,相對的錯誤率增加,因此,在系統錯誤率及降低PAPR需要找到一個最佳的平衡點。另外,在功率放大器線性化方面則是使用memory polynomial predistorter (MPPD) 搭配間接學習架構 (indirect learning, IDL) 或是直接學習架構 (direct learning, DL) 利用 least square (LS) 及least mean square (LMS)演算法求出預扭器參數,放大器方面則是使用Wiener 及Wiener-Hammerstein兩個放大器模型,最後將把相位轉向技術與多項式預扭器技術合併使用並以total degradation (TD)和功率頻譜密度(power spectral density, PSD)來做系統的效能評估,還有錯誤率的曲線圖,可以有效地改善整體的系統效能,且特別是當Iterative PR技術結合IDL預扭器技術使用LMS演算法時可獲得最佳的效能表現。


The orthogonal frequency division multiplex (OFDM) system has an advantage of high bandwidth efficiency, and is able to resist the multipath fading interference; its major disadvantage is high peak to average power ratio (PAPR). The signal passing a power amplifier (PA) can be clipped depending on the operation point of the PA. This clipped signal results in distortion. Digital predistorter (DPD) can efficiently linearize the power amplifier so as to improve the power efficiency. In addition, it can reduce the bit error rate and also suppress spectrum regrowth. In order to alleviate these drawbacks, PAPR reduction and PA linearization have both been extensively studied to deal with this important issue. In this thesis, we propose a new approach which uses Hadamard /Companding transform to combine the metric based phase reversal (PR)/iterative PR/extended PR/combined PR PAPR reduction schemes. And we improve the performance of this issue with side information or without side information in the situation. Then, we use the PAPR reduction schemes combination of memory polynomial predistorter (MPPD) with indirect learning (IDL) / direct learning (DL) architecture. A comparative study of performance of different combinations using Wiener power amplifier model / Wiener-Hammerstein power amplifier model is presented in terms of total degradation (TD) and power spectral density (PSD). Simulation results indicate that improvement of PAPR efficiency by adding hadamard transform and companding technique and our proposed combination approach can effectively improve the performance. In particular, MPPD using LMS algorithm with iterative PR is the best one to the power efficiency.

致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 簡介 1 1.1 背景介紹 1 1.2 研究動機和目的 1 1.3 章節介紹 7 Chapter 2 功率放大器與預扭器模型與相位轉向技術 8 2.1 功率放大器模型 8 2.1.1 無記憶性的功率放大器模型 10 2.1.2 無記憶性多項式模型 10 2.1.3 具記憶性的功率放大器模型 13 2.1.4 Volterra 級數 13 2.1.5 多項式模型 13 2.1.6 Wiener模型 14 2.1.7 Wiener-Hammerstein 模型 15 2.2 預扭器模型及架構 15 2.2.1 在間接學習架構下的記憶性多項式預扭器(MPPD) 16 2.2.2 在直接學習架構下的記憶性多項式預扭器(MPPD) 17 2.3 演算法 18 2.3.1 在間接學習架構中搭配LS演算法 18 2.3.2 在間接學習架構中搭配LMS演算法 19 2.3.3 在直接學習架構中搭配LS演算法 19 2.3.4 在直接學習架構中搭配LMS演算法 20 2.4 相位轉向技術 21 2.4.1 判別機制(metric) 21 2.4.2 相位轉向技術(PR) 23 2.4.3 延展相位轉向技術(Extended PR) 25 2.4.4 反覆相位轉向技術(Iterative PR) 28 2.4.5 結合延展及反覆相位轉向技術(Combined PR) 30 Chapter 3 利用Hadamard/Companding轉換在有無旁資訊的情況下降低峰均功率比 31 3.1 介紹 Hadamard轉換和Companding轉換 31 3.1.1 Hadamard 轉換 31 3.1.2 Companding 轉換 32 3.1.3 Hadamard transform 結合Companding技術 35 3.2 在需要旁資訊的情況下利用Hadamard/Companding轉換降低PAPR 37 3.3 在不需要旁資訊的情況下利用Hadamard/Companding轉換降低PAPR 38 Chapter 4 結合降低峰均功率比(PAPR)技術與記憶性多項式預扭器(MPPD)技術之OFDM系統模型 39 4.1 使用間接學習(IDL)架構之系統模型 39 4.2 使用直接學習(DL)架構之系統模型 41 Chapter 5 模擬與討論 43 5.1 系統效能之量測 43 5.2 使用MPPD 技術之效能分析 45 5.2.1 介紹Wiener PA model和Wiener-Hammerstein PA model 45 5.2.2 使用Wiener PA model配合使用LS_IDL、LMS_IDL和LMS_DL技術 47 5.2.3 使用Wiener-Hammerstein PA model配合使用LS_IDL、LMS_IDL和LMS_DL技術 48 5.3 利用Hadamard/Companding轉換結合相位轉向技術降低PAPR之效能分析 49 5.3.1 在需要旁資訊的情況下的效能分析 49 5.3.2 在不需要旁資訊的情況下的效能分析 53 5.4 使用降低PAPR技術合併MPPD技術之效能分析 56 5.4.1 使用Wiener PA model 59 5.4.2 使用Wiener-Hammerstein PA model 69 5.5 總結討論分析比較 78 Chapter 6 結論 85 REFERENCE 86

[1] Y. Kim, Y. Yang, S. H. Kang, and B. Kim, “Linearization of 1.85 GHz amplifier using feedback predistortion loop,” in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, vol. 3, pp. 1675–1678, Jun. 1998
[2] Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “A new adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, no. 4, pp. 22-44, Apr. 2003
[3] Seung Hee Han and Jae Hong Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Ttrans. on Wireless Communications, vol. 12,no. 2,pp. 56 – 65, April 2005.
[4] N. Dinur and D. Wulich, “Peak to average power ratio in amplitude clipped high order OFDM,” IEEE Military Communications Conference, vol. 2, pp.684 – 687, Oct. 1998.
[5] Xiaodong Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE 47th Vehicular Technology Conference, vol. 3,pp.1634 – 1638, 4-7 May, 1997.
[6] R. W. Bauml, R. F. H. Fisher, and J. B. Huber, “Reducing the peak to average power ratio of multicarrier modulation by selected mapping,” Electronics Letters, vol.32, no. 22, pp. 2056-2057, Oct. 1996.
[7] S. H. Muller and J. B. Huber, “OFDM with reduced peak to average power ratio by optimum combination of partial transmit sequences,” Electronics Letters, vol. 33, no. 5, pp. 368-69, Feb. 1997.
[8] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. on Broadcasting, vol. 49, no. 3, pp.258-268, Sept. 2003.
[9] 錢柏君,”在正交分頻多工系統中基於間接和直接學習架構使用多項式預扭器之效能分析,”台灣科技大學碩士論文,2007
[10] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers,” IEEE Transactions on Communications, vol. COM-29, no. 11, pp. 1715-1720, Nov. 1981.

[11] S. Pupolin and L. J. Greenstein, “Performance analysis of digital radio links with nonlinear transmit amplifiers,” IEEE Journal on Selected Areas Communications, vol. 5, no. 3, pp. 534-546, Apr. 1987.
[12] J. Tsimbinos and K. V. Lever, ”Computational complexity of Volterra based nonlinear compensators,” IEEE Electronics Letters, vol. 32, no. 9, pp. 852-854, Apr. 1996.
[13] Raich, Raviv, “Nonlinear system identification and analysis with applications to power amplifier modeling and power amplifier predistortion,” Ph.D. Dissertation, Georgia institute of technology, March 2004.
[14] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980.
[15] Kim, J. and Konstantinou, K., “Digital predistortion of wideband signals based on power amplifier model with memory," IEEE Electronics Letters, vol. 37, no. 23, pp. 1417-1418, Nov. 2001.
[16] Lei Ding, Zhou, G.T., Morgan, D.R., Zhengxiang Ma, Kenney, J.S., Jaehyeong Kim and Giardina, C.R.; “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Transactions on Communications, vol. 52, no. 1,pp.159 – 165, Jan. 2004
[17] Gilabert, P., Montoro, G. and Bertran, E. “On the Wiener and Hammerstein models for power amplifier predistortion,” Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, vol. 2, pp. 4 pp,4-7 Dec. 2005.
[18] Manne, G. K. and Yao, T. “On the predistortion technique for improving transmission linearity of OFDM system,” Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, vol. 6, pp.3876 – 3879, Sept. 2004.
[19] S. Sezginer and H. Sari, “Metric-based symbol predistortion techniques for peak power reduction in OFDM systems,” IEEE Transactions on Wireless Communications, vol. 6, no. 7, pp.2622 – 2629, July 2007.
[20] 林彥言,”利用相位轉向技術以降低正交分頻多工系統的峰均功率比之研究.”, 台灣科技大學碩士論文,2008
[21] 尤宏志, “改善相位轉向技術與頻道保留技術之研究”,台灣科技大學碩士論文, 2010
[22] Myonghee Park; Heeyoung Jun; Jaehee Cho; Namshin Cho; Daesik Hong; Changeun Kang; , "PAPR reduction in OFDM transmission using Hadamard transform," IEEE International Conference on, vol.1, no., pp.430-433 vol.1, June 2000
[23] X. Wang, T. T. Tjhung,, and C. S. Ng, "Reduction of peak-to-average power ratio of OFDM system using a companding technique," IEEE Trans. Broadcast., vol. 45, pp. 303–307, Sep. 1999.
[24] X. Wang, T. jhung, and Y. Wu, "On the ser and spectral analyses of a-law companded multicarrier modulation," IEEE. Trans. on Vehicular Tech., vol. 52, no. 5, pp. 1408–1412, Sep 2003.
[25] T. Jiang et al., "Exponential companding transform for PAPR reduction in OFDM systems," IEEE Trans. Broadcast., vol. 51, no. 2, pp. 244–248, Jun. 2005.
[26] T. Jiang et al., "Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems," IEEE Trans. Broadcast., vol. 52, no. 2, pp. 268–273, Jun. 2006.

QR CODE