研究生: |
李政其 Li, - Chengchi |
---|---|
論文名稱: |
傻瓜運鏡:虛擬拍立得掌鏡系統 EZCam: WYSWYG Camera Manipulator for Path Design |
指導教授: |
賴祐吉
Yu-Chi Lai |
口試委員: |
姚智原
Chih-Yuan Yao 朱宏國 Hung-Kuo Chu 王昱舜 Yu-Shuen Wang |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 資訊工程系 Department of Computer Science and Information Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 標記追蹤 、拍攝路徑設計 、相機姿態操作 |
外文關鍵詞: | marker-based camera tracking, Camera path design, camera transformation manipulator |
相關次數: | 點閱:404 下載:19 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
影片製作中往往會使用動畫軟體先在虛擬場景試鏡,這時候攝影導演(Director of Photography, DP)需要在設計拍攝路徑的過程中不斷重複微調、拍攝、檢視的流程與團隊溝通。
這是因為在虛擬空間運鏡非常費時,設定複雜且需要在設定完後才能輸出,無法立即看見成果。
是故往往需要一次次微調並從頭播放動畫以一步步檢討修正,不計場景佈置的話甚至不如直接拿實體鏡頭拍攝簡單。
故設計此傻瓜運鏡系統,讓攝影導演能夠即拍即得,使虛擬空間運鏡變得跟拿實體相機一樣簡單,加速此一檢討修正運鏡的流程。
傻瓜運鏡系統使用一個貼滿標記的箱子,使用者直接手持實體鏡頭在其中運鏡,且將運鏡結果即時顯示給使用者觀察。
系統軟體部份根據實體鏡頭拍攝到的標記計算鏡頭的移動,將其傳給動畫軟體以操作虛擬世界中的鏡頭,最後即時將此虛擬鏡頭看見的畫面傳達給使用者,達成拍立得的目標。
且系統保留彈性,能分部替換,如最終對虛擬鏡頭視野進行繪圖的動畫軟體就能輕易替換成各種繪圖引擎。
本研究亦針對傻瓜運鏡系統進行實驗以證實其性能,經設計情境進行使用者研究後,證明此系統確實能夠增進設計拍攝路徑的效率,加速試鏡流程。
With advance in movie industry, composite interactions and complex visual effects require to shoot at the designed part of a scene for immersion.
Traditionally, the director of photography (DP) plans a camera path by recursively reviewing and commenting path-planning rendered results.
Since the adjust-render-review process is not immediate and interactive, mis-communications happen to make the process ineffective and time consuming.
Therefore, this work proposes a What-You-See-What-You-Get camera path reviewing system for the director to interactively instruct and design camera paths.
Our system consists of a camera handle, a parameter control board, and a camera tracking box with mutually perpendicular marker planes.
When manipulating the handle, the attached camera captures markers on visible planes with selected parameters to adjust the world rendering view.
The director can directly examine results to give immediate comments and feedbacks on transformation and parameter adjustment in order to achieve effective communication and reduce the reviewing time.
Finally, we conduct a set of qualitative and quantitative evaluations to show that our system is robust and efficient and can provide means to give interactive and immediate instructions for effective communication and efficiency enhancement during path design.
[1] F. Gaspar, R. Bastos, and M. Sales, “Accurate infrared tracking system for im-
mersive virtual environments,” Int. J. Creat. Interaces Comput. Graph., vol. 2,
pp. 49–73, July 2011.
[2] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marı́n-
Jiménez, “Automatic generation and detection of highly reliable fiducial mark-
ers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280 – 2292, 2014.
[3] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR’07), (Nara, Japan), November 2007.
[4] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct monocular
visual odometry,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1–8, 2014.
[5] “Ncam: Ar/vr realtime camera tracking,” 2015.
[6] “Qualcomm vuforia developer portal,” 2015.
[7] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shot-
ton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “Kinectfusion:
Real-time 3d reconstruction and interaction using a moving depth camera,” in
Proceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology, UIST ’11, pp. 559–568, ACM, 2011.
[8] M. Jaimez and J. González-Jiménez, “Fast visual odometry for 3-d range sen-
sors,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 809–822, 2015.
61[9] S. Madgwick, A. Harrison, and A. Vaidyanathan, “Estimation of imu and marg
orientation using a gradient descent algorithm.,” 2011.
[10] “Google cardboard,” 2015.
[11] X. Wang, “Using augmented reality to plan virtual construction work site,”
Journal of Advanced Robotic Systems, vol. 4, no. 4, pp. 501–512, 2007.
[12] B. MacIntyre, A. Hill, H. Rouzati, M. Gandy, and B. Davidson, “The argon ar
web browser and standards-based ar application environment,” in Mixed and
Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on,
pp. 65–74, Oct 2011.
[13] A. P. Gee, M. Webb, J. Escamilla-Ambrosio, W. Mayol-Cuevas, and A. Calway,
“A topometric system for wide area augmented reality,” Computers & Graphics,
vol. 35, no. 4, pp. 854 – 868, 2011.
[14] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for a video-
based augmented reality conferencing system,” in Proceedings of the 2Nd IEEE
and ACM International Workshop on Augmented Reality, IWAR ’99, pp. 85–94,
Oct 1999.
[15] M. Fiala, “Designing highly reliable fiducial markers,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 32, pp. 1317–1324, July 2010.
[16] L. Calvet, P. Gurdjos, and V. Charvillat, “Camera tracking based on circular
point factorization,” in ICPR’12, pp. 2128–2131, 2012.
[17] F. Bergamasco, A. Albarelli, and A. Torsello, “Image-space marker detection
and recognition using projective invariants,” in 3D Imaging, Modeling, Process-
ing, Visualization and Transmission (3DIMPVT), 2011 International Confer-
ence on, pp. 381–388, May 2011.
62[18] M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based mav nav-
igation in unknown and unstructured environments,” in Robotics and Automa-
tion (ICRA), 2010 IEEE International Conference on, pp. 21–28, May 2010.
[19] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg,
“Real-time detection and tracking for augmented reality on mobile phones,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 16, pp. 355–
368, May 2010.
[20] L. Kneip, M. Chli, and R. Siegwart, “Robust real-time visual odometry with
a single camera and an imu,” in Proceedings of the British Machine Vision
Conference, pp. 16.1–16.11, 2011.
[21] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli, and
R. Siegwart, “Monocular vision for long-term micro aerial vehicle state estima-
tion: A compendium,” Journal of Field Robotics, vol. 30, no. 5, pp. 803–831,
2013.
[22] M. Irani and P. Anandan, “About direct methods,” in Proceedings of the In-
ternational Workshop on Vision Algorithms: Theory and Practice, ICCV ’99,
pp. 267–277, 2000.
[23] A. Comport, E. Malis, and P. Rives, “Real-time quadrifocal visual odometry,”
Int. J. Rob. Res., vol. 29, pp. 245–266, Feb. 2010.
[24] T. Tykkala, C. Audras, and A. I. Comport, “Direct iterative closest point for
real-time visual odometry,” in Computational Methods for the Innovative De-
sign of Electrical Devices’11, pp. 2050–2056, 2011.
[25] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for rgb-d
cameras,” in In ICRA, 2013.
63[26] J.-W. Kuo, “Personal communication,” 2014.
[27] D. C. Brown, “Decentering distortion of lenses,” Photogrammetric Engineering,
1966.
[28] D. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.
[29] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” Computer Vision and Image Understanding (CVIU), vol. 110, no. 3,
pp. 346–359, 2008.
[30] S. Li, C. Xu, and M. Xie, “A robust o(n) solution to the perspective-n-point
problem,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 34, pp. 1444–1450, July 2012.
[31] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: exploring photo collec-
tions in 3d,” ACM transactions on graphics (TOG), vol. 25, no. 3, pp. 835–846,
2006.
[32] J. Hesch and S. Roumeliotis, “A direct least-squares (dls) method for pnp,” in
Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 383–
390, 2011.
[33] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n) solution to
the pnp problem,” International Journal of Computer Vision (IJCV), vol. 81,
no. 2, pp. 155–166, 2009.
[34] L. Kneip, H. Li, and Y. Seo, “Upnp: An optimal o(n) solution to the absolute
pose problem with universal applicability,” in Computer Vision – ECCV 2014
(D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds.), vol. 8689 of Lecture
Notes in Computer Science, pp. 127–142, Springer, 2014.
64[35] “Open cv,” 2015.
[36] R. Kirk, Experimental Design. Brooks/Cole Publishing Company, second ed.,
1982.
[37] F. Caballero, J. Perez, and L. Merino, “Long-term ground robot localization
architecture for mixed indoor-outdoor scenarios,” in ISR/Robotik 2014; 41st
International Symposium on Robotics; Proceedings of, pp. 1–8, VDE, 2014.
[38] P. Ivanov and D. Shell, “Associating nearby robots to their voices,” in AL-
IFE 14: The Fourteenth Conference on the Synthesis and Simulation of Living
Systems, vol. 14, pp. 274–281.
[39] J. J. LaViola, “Double exponential smoothing: An alternative to kalman filter-
based predictive tracking,” in Proceedings of Immersive Projection Technology
and Virtual Environments, EGVE ’03, pp. 199–206, 2003.
[40] F. Liarokapis, N. Mourkoussis, M. White, J. Darcy, M. Sifniotis, P. Petridis,
A. Basu, and P. F. Lister, “Web3d and augmented reality to support engi-
neering education,” WORLD TRANSACTIONS ON ENGINEERING AND
TECHNOLOGY EDUCATION, UICEE, vol. 3, no. 1, pp. 11–14, 2004.
[41] A. B. Mattos, C. Cardonha, D. Gallo, P. Avegliano, R. Herrmann, and
S. Borger, “Marker-based image recognition of dynamic content for the visu-
ally impaired,” in Proceedings of the 11th Web for All Conference, p. 34, ACM,
2014.
[42] V. T. Phan and S. Y. Choo, “Augmented reality-based education and fire pro-
tection for traditional korean buildings,” International Journal of Architectural
Computing, vol. 8, no. 1, pp. 75–91, 2010.
65[43] A. Stathakis and E. Petriu, “Robust pseudo-random fiducial marker for in-
door localization,” in Robotic and Sensors Environments (ROSE), 2011 IEEE
International Symposium on, pp. 19–24, Sept 2011.
[44] A. Tommaselli, J. Marcato Jr, M. Moraes, S. Silva, and A. Artero, “Calibration
of panoramic cameras with coded targets and a 3d calibration field,” ISPRS-
International Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, vol. 1, no. 1, pp. 137–142, 2014.
[45] A. M. G. Tommaselli and A. Berveglieri, “Automatic orientation of multi-
scale terrestrial images for 3d reconstruction,” Remote Sensing, vol. 6, no. 4,
pp. 3020–3040, 2014.
[46] X. Wang, P. S. Dunston, and M. Skibniewski, “Mixed reality technology ap-
plications in construction equipment operator training,” in ISARC 2004 21st
International Symposium on Automation and Robotics in Construction, pp. 1–
8, 2004.
[47] “The R project for statistical computing,” 2013.
[48] “Collaborative augmented reality in education,” in Imagina Conference 2003,
2003.