簡易檢索 / 詳目顯示

研究生: 葉昱宏
Yu-Hung Yeh
論文名稱: 微電漿合成矽量子點與矽奈米膠及生物分子感測應用
Microplasma Synthesis of Silicon Quantum Dots and Silicon Nanogels for Biomolecular Sensing
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江建文
Kien-Voon Kong
謝元榜
Yuan-Pang Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 88
中文關鍵詞: 微電漿矽量子點葉酸感測三磷酸腺苷感測光致發光感測
外文關鍵詞: Microplasma, Silicon quantum dots, Folic acid sensing, Adenosine triphosphate sensing, Photoluminescence sensing
相關次數: 點閱:281下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽量子點 (SiQD) 代表了一類新型先進材料,具有許多獨特且出色的特性,例如可調諧光致發光 (PL) 發射、光穩定性和可控表面官能團以及良好的生物相特性。 電容等,使其成為生物技術應用領域具有前瞻性和未來性的納米材料。 此外,Si作為地球上儲量豐富的元素,具有化學惰性、消耗成本低、生物友好、無毒等優點,在半導體工業中得到了廣泛的應用[1]。 此外,通過對SiQDs進行適當的表面功能化,可以通過氫鍵和靜電力實現Si表面的分子相互作用,從而實現生物分子的高靈敏度和選擇性檢測。 [2] 然而,目前的SiQD合成方法包括自上而下的方法(例如蝕刻和電化學方法)以及自下而上的方法(例如水熱和微波方法)。 通常這些傳統的合成方法耗時且需要昂貴的化學品、高溫和復雜的合成。 此外,這些傳統方法通常涉及有毒還原劑、複合穩定劑、強酸強鹼等。總體而言,目前仍缺乏一種簡便、快速的大規模生產方法來合成結構可控的表面功能化SiQDs。 具有高靈敏度和選擇性的生物分子檢測。
    在這裡,我們報告了一種簡便的微等離子體工程,用於快速合成高質量的基於 SiQD 的納米凝膠 (SiQDNG)。 我們還探索了 SiQDNG 在傳感生物分子方面的潛力。 值得注意的是,等離子體合成的 SiQDNG 可以通過基於光致發光的傳感技術檢測葉酸和三磷酸腺苷 (ATP)。 葉酸最低傳感濃度達到92 nM,ATP最低傳感濃度達到35 nM。 我們的工作為生物分子傳感提供了優異的結果,並為基於 SiQD 的納米材料的合成和應用開闢了新的方向。


    Silicon quantum dots (SiQDs) represent a new class of advanced materials with many unique and outstanding properties such as tunable photoluminescence (PL) emission, photostability and controllable surface functional groups and favorable biophasic properties. Capacitance, etc., making it a forward-looking and futuristic nanomaterial for biotechnology applications. In addition, as an earth-abundant element, Si has the advantages of chemical inertness, low consumption cost, biological friendliness, and non-toxicity, and has been widely used in the semiconductor industry [1]. In addition, through proper surface functionalization of SiQDs, molecular interactions on the Si surface can be achieved through hydrogen bonding and electrostatic forces, thereby achieving highly sensitive and selective detection of biomolecules. [2] However, current SiQD synthesis methods include top-down methods (such as etching and electrochemical methods) as well as bottom-up methods (such as hydrothermal and microwave methods). Usually these traditional syntheses are time-consuming and require expensive Chemicals, high temperature, and complex synthesis. In addition, these traditional methods usually involve toxic reducing agents, compound stabilizers, and strong acids and bases, etc. Overall, there is still a lack of a facile and rapid mass-production method to synthesize surface-functionalized SiQDs with controlled structures for the detection of biomolecules with high sensitivity and selectivity.
    Here, we report a facile microplasma engineering for the rapid synthesis of high-quality SiQD-based nanogels (SiQDNG). We also explored the potential of SiQDNG for sensing biomolecules. Notably, the plasmonic-synthesized SiQDNG can detect folic acid and adenosine triphosphate (ATP) via a photoluminescence-based sensing technique. The lowest sensing concentration of folic acid reaches 92 nM, and the lowest sensing concentration of ATP reaches 35 nM. Our work provides excellent results for biomolecular sensing and opens new directions for the synthesis and application of SiQD-based nanomaterials.

    Abstract i Content iii List of figures iv List of table vii Abstrat viii 1. Introduction 1 1-1 Silicon quantum dots 1 1-2 Microplasma 15 1-3 Photoluminescence sensing 18 1-3.1 Silicon Quantum Dot Sensors 19 1-3-2 Photoluminescence mechanism 20 1-3-3 Folic Acid Sensing 25 1-3-4 adenosine triphosphate sensing 30 2. Experiment 33 2-1 Materials and Chemicals 33 2-2 Preparation of silicon quantum dots 35 2-2-1 SiQD synthesis 35 2-2-2 Purification and preparation of silicon nanogel (SiNG) 36 2-3 Selective preparation of biomolecules 37 2-4 Photoluminescence-based FA and ATP sensing 37 2-5 Characterizations 38 3. Characteristics of Synthesized Silicon Quantum Dots and Silicon Nanogels 46 3-1 Effect of Precursors on Silicon Quantum Dots 46 3-2 The difference characteristic between silicon quantum dots and silicon nanogel 55 4. Photoluminescence Biomolecular Sensing 63 4-1 Folic Acid Sensing 63 4-1-1 Optimization of Photoluminescence Sensing for folic acid (FA) 64 4-2 adenosine triphosphate Sensing 69 4-2-1 Optimization of Photoluminescence Sensing for adenosine triphosphate (ATP) 70 4-3 Sensing mechanism speculated 74 5. Conclusion 79 6. Reference 80

    1. Jalali, H.B., et al., Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials. Chemical Society Reviews, 2022.
    2. Karel Čapek, R., et al., Optical properties of zincblende cadmium selenide quantum dots. The Journal of Physical Chemistry C, 2010. 114(14): p. 6371-6376.
    3. Rahman, M.M., et al., Cadmium selenide quantum dots for solar cell applications: a review. Chemistry–An Asian Journal, 2021. 16(8): p. 902-921.
    4. Takagahara, T. and K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Physical Review B, 1992. 46(23): p. 15578.
    5. Zhu, S., et al., Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today, 2017. 13: p. 10-14.
    6. Badıllı, U., et al., Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC Trends in Analytical Chemistry, 2020. 131: p. 116013.
    7. Chinnathambi, S., et al., Silicon quantum dots for biological applications. Advanced healthcare materials, 2014. 3(1): p. 10-29.
    8. Gidwani, B., et al., Quantum dots: Prospectives, toxicity, advances and applications. Journal of Drug Delivery Science and Technology, 2021. 61: p. 102308.
    9. Hardman, R., A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental health perspectives, 2006. 114(2): p. 165-172.
    10. Ghosh, B. and N. Shirahata, Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Science and Technology of Advanced Materials, 2014. 15(1): p. 014207.
    11. Conibeer, G., et al., Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films, 2008. 516(20): p. 6748-6756.
    12. Roy, D., et al., Multi-emissive biocompatible silicon quantum dots: Synthesis, characterization, intracellular imaging and improvement of two fold drug efficacy. Dyes and Pigments, 2021. 186: p. 109004.
    13. Morozova, S., et al., Silicon quantum dots: synthesis, encapsulation, and application in light-emitting diodes. Frontiers in Chemistry, 2020. 8: p. 191.
    14. Jo, M., et al., Highly efficient radiative recombination of electron–hole pairs localized at compound semiconductor quantum dots embedded in Si. Physica E: Low-dimensional Systems and Nanostructures, 2004. 21(2-4): p. 354-357.
    15. Pisanic Ii, T., Y. Zhang, and T. Wang, Quantum dots in diagnostics and detection: principles and paradigms. Analyst, 2014. 139(12): p. 2968-2981.
    16. Cheng, X., et al., Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chemical Society Reviews, 2014. 43(8): p. 2680-2700.
    17. Shiohara, A., et al., Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale, 2011. 3(8): p. 3364-3370.
    18. Mercaldo, L.V., et al., PECVD in-situ growth of silicon quantum dots in silicon nitride from silane and nitrogen. Materials Science and Engineering: B, 2009. 159: p. 77-79.
    19. Wang, Y.-F., et al., Beyond the fluorescence labelling of novel nitrogen-doped silicon quantum dots: the reducing agent and stabilizer for preparing hybrid nanoparticles and antibacterial applications. Journal of Materials Chemistry B, 2022. 10(36): p. 7003-7013.
    20. Baek, S.H., et al., Synthesis of fluorescent silicon quantum dots for ultra-rapid and selective sensing of Cr (VI) ion and biomonitoring of cancer cells. Materials Science and Engineering: C, 2018. 93: p. 429-436.
    21. Gongalsky, M., et al., Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging. Scientific reports, 2016. 6(1): p. 1-8.
    22. Rodio, M., et al., Direct surface modification of ligand-free silicon quantum dots prepared by femtosecond laser ablation in deionized water. Journal of colloid and interface science, 2016. 465: p. 242-248.
    23. Wu, M., et al., Production of silicon quantum dots for photovoltaic applications by picosecond pulsed laser ablation. Materials Science and Engineering: B, 2005. 116(3): p. 273-277.
    24. Kim, M., et al., Synthesis of nanoparticles by laser ablation: A review. KONA Powder and Particle Journal, 2017. 34: p. 80-90.
    25. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Nanoimprint lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996. 14(6): p. 4129-4133.
    26. Valenta, J., R. Juhasz, and J. Linnros, Photoluminescence spectroscopy of single silicon quantum dots. Applied physics letters, 2002. 80(6): p. 1070-1072.
    27. Yanagawa, H., et al., Photoluminescence enhancement of silicon quantum dot monolayer by plasmonic substrate fabricated by nano-imprint lithography. Journal of Applied Physics, 2017. 122(22): p. 223101.
    28. Oda, S. and K. Nishiguchi, Nanocrystalline silicon quantum dots prepared by VHF plasma enhanced chemical vapor deposition. Le Journal de Physique IV, 2001. 11(PR3): p. Pr3-1065-Pr3-1071.
    29. Sychugov, I., et al., Structural imaging of a Si quantum dot: Towards combined PL and TEM characterization. Journal of luminescence, 2006. 121(2): p. 353-355.
    30. Singh, R.D., et al., Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: from biology to clinical translation. Frontiers in genetics, 2018. 9: p. 616.
    31. Cheng, Q., S. Xu, and K.K. Ostrikov, Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas. Acta Materialia, 2010. 58(2): p. 560-569.
    32. Askari, S., et al., Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas. Journal of Physics D: Applied Physics, 2015. 48(31): p. 314002.
    33. Askari, S., et al., Crystalline Si nanoparticles below crystallization threshold: effects of collisional heating in non-thermal atmospheric-pressure microplasmas. Applied Physics Letters, 2014. 104(16): p. 163103.
    34. Singh, R., et al., Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Materials today chemistry, 2019. 12: p. 282-314.
    35. Lu, H., et al., Infrared quantum dots: Progress, challenges, and opportunities. ACS nano, 2019. 13(2): p. 939-953.
    36. Ma, J., et al., Effect of surface passivation on dopant distribution in Si quantum dots: The case of B and P doping. Applied Physics Letters, 2011. 98(17): p. 173103.
    37. Wolkin, M., et al., Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Physical Review Letters, 1999. 82(1): p. 197.
    38. Pandey, S. and D. Bodas, High-quality quantum dots for multiplexed bioimaging: A critical review. Advances in Colloid and Interface Science, 2020. 278: p. 102137.
    39. Sugimoto, H., et al., Donor–acceptor pair recombination in size-purified silicon quantum dots. Nano Letters, 2018. 18(11): p. 7282-7288.
    40. Bagheri, E., et al., Silica–quantum dot nanomaterials as a versatile sensing platform. Critical Reviews in Analytical Chemistry, 2021. 51(7): p. 687-708.
    41. Mangolini, L., et al., Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals. Journal of luminescence, 2006. 121(2): p. 327-334.
    42. Mangolini, L., et al., High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation. physica status solidi c, 2006. 3(11): p. 3975-3978.
    43. Chang, G.Y., et al., Microplasma-Enabled Surfaced-Functionalized Silicon Quantum Dots for Label-Free Detection of Dopamine. ACS Omega, 2022. 7(1): p. 223-229.
    44. Kurniawan, D., et al., Microplasma band structure engineering in graphene quantum dots for sensitive and wide-range pH sensing. ACS Applied Materials & Interfaces, 2021. 14(1): p. 1670-1683.
    45. Ma, X., et al., Synthesis of luminescent carbon quantum dots by microplasma process. Chemical Engineering and Processing-Process Intensification, 2019. 140: p. 29-35.
    46. Ma, X., et al., Synthesis of luminescent carbon quantum dots by microplasma process. Chemical Engineering and Processing - Process Intensification, 2019. 140: p. 29-35.
    47. Wu, J.J., et al., Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment. Journal of Physics D: Applied Physics, 2016. 49(8): p. 08LT02.
    48. Dorontić, S., S. Jovanović, and A. Bonasera, Shedding light on graphene quantum dots: Key synthetic strategies, characterization tools, and cutting-edge applications. Materials, 2021. 14(20): p. 6153.
    49. Harun, N.A., B.R. Horrocks, and D.A. Fulton, Enhanced Raman and luminescence spectra from co-encapsulated silicon quantum dots and Au–Ag nanoalloys. Chemical Communications, 2014. 50(82): p. 12389-12391.
    50. Harun, N.A., et al., Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles. Nanoscale, 2013. 5(9): p. 3817-3827.
    51. Zhi, Y., T. Thiessen, and A. Meldrum, Silicon quantum dot coated microspheres for microfluidic refractive index sensing. JOSA B, 2013. 30(1): p. 51-56.
    52. Erogbogbo, F., et al., Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS nano, 2008. 2(5): p. 873-878.
    53. Chen, J., et al., Synthesis of biocompatible and highly fluorescent N-doped silicon quantum dots from wheat straw and ionic liquids for heavy metal detection and cell imaging. Science of The Total Environment, 2021. 765: p. 142754.
    54. Yi, Y., et al., A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Analytical Chemistry, 2013. 85(23): p. 11464-11470.
    55. Zhang, Z., et al., Detection of ethanol and water vapor with silicon quantum dots coupled to an optical fiber. Sensors and Actuators B: Chemical, 2013. 181: p. 523-528.
    56. Hernando, P.J., et al., Recent developments in the use of glyconanoparticles and related quantum dots for the detection of lectins, viruses, bacteria and cancer cells. Frontiers in Chemistry, 2021. 9: p. 668509.
    57. Paul, A., et al., Photoresponsive real time monitoring silicon quantum dots for regulated delivery of anticancer drugs. Journal of Materials Chemistry B, 2016. 4(3): p. 521-528.
    58. Wu, J., et al., New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews, 2011. 40(7): p. 3483-3495.
    59. Sugimoto, H., et al., Charge-transfer-induced photoluminescence enhancement in colloidal silicon quantum dots. The Journal of Physical Chemistry C, 2017. 121(21): p. 11962-11967.
    60. Goryacheva, I.Y., A.V. Sapelkin, and G.B. Sukhorukov, Carbon nanodots: mechanisms of photoluminescence and principles of application. TrAC Trends in Analytical Chemistry, 2017. 90: p. 27-37.
    61. Jin, S.H., et al., Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS nano, 2013. 7(2): p. 1239-1245.
    62. Kim, S.-Y., et al., Influence of π-conjugation structural changes on intramolecular charge transfer and photoinduced electron transfer in donor–π–acceptor dyads. Physical Chemistry Chemical Physics, 2017. 19(1): p. 426-435.
    63. Panja, S.K., N. Dwivedi, and S. Saha, Tuning the intramolecular charge transfer (ICT) process in push–pull systems: effect of nitro groups. RSC advances, 2016. 6(107): p. 105786-105794.
    64. El-Khouly, M.E., D.H. Choi, and S. Fukuzumi, Photoinduced energy-transfer and electron-transfer processes in molecules of tetrakis ((E)-2-(50-hexyl-2, 20-bithiophen-5-yl) vinyl) benzene and perylenediimide. Journal of Photochemistry and Photobiology A: Chemistry, 2011. 218(1): p. 17-25.
    65. Broussard, J.A., et al., Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nature protocols, 2013. 8(2): p. 265.
    66. Liang, Z., et al., Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS applied materials & interfaces, 2016. 8(27): p. 17478-17488.
    67. Bourassa, P. and H. Tajmir-Riahi, Folic acid binds DNA and RNA at different locations. International journal of biological macromolecules, 2015. 74: p. 337-342.
    68. Duthie, S.J., Folic acid deficiency and cancer: mechanisms of DNA instability. British medical bulletin, 1999. 55(3): p. 578-592.
    69. Albert, C.M., et al., Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. Jama, 2008. 299(17): p. 2027-2036.
    70. Patel, K. and A. Sobczyńska-Malefora, The adverse effects of an excessive folic acid intake. European journal of clinical nutrition, 2017. 71(2): p. 159-163.
    71. Beitollahi, H., J.-B. Raoof, and R. Hosseinzadeh, Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Analytical Sciences, 2011. 27(10): p. 991-991.
    72. Zhang, Z., et al., Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorganic & medicinal chemistry, 2010. 18(15): p. 5528-5534.
    73. Chen, H. and Y.-H.P.J. Zhang, Enzymatic regeneration and conservation of ATP: Challenges and opportunities. Critical reviews in biotechnology, 2021. 41(1): p. 16-33.
    74. Li, J., N.C. King, and L.I. Sinoway, ATP concentrations and muscle tension increase linearly with muscle contraction. Journal of Applied Physiology, 2003. 95(2): p. 577-583.
    75. Pontes, M.H., A. Sevostyanova, and E.A. Groisman, When too much ATP is bad for protein synthesis. Journal of molecular biology, 2015. 427(16): p. 2586-2594.
    76. Vasiliou, V., K. Vasiliou, and D.W. Nebert, Human ATP-binding cassette (ABC) transporter family. Human genomics, 2009. 3(3): p. 1-10.
    77. Hatzivassiliou, G., et al., ATP citrate lyase inhibition can suppress tumor cell growth. Cancer cell, 2005. 8(4): p. 311-321.
    78. Flanagan, S.E., et al., Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes, 2007. 56(7): p. 1930-1937.
    79. Lv, J., et al., ATP-sensitive potassium channels: a double-edged sword in neurodegenerative diseases. Ageing Research Reviews, 2022: p. 101676.
    80. Vultaggio-Poma, V., A.C. Sarti, and F. Di Virgilio, Extracellular ATP: a feasible target for cancer therapy. Cells, 2020. 9(11): p. 2496.
    81. Mimoto, F., et al., Exploitation of elevated extracellular ATP to specifically direct antibody to tumor microenvironment. Cell reports, 2020. 33(12): p. 108542.
    82. Imamura, H., et al., Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proceedings of the National Academy of Sciences, 2009. 106(37): p. 15651-15656.
    83. Nante, N., et al., Effectiveness of ATP bioluminescence to assess hospital cleaning: a review. Journal of Preventive Medicine and Hygiene, 2017. 58(2): p. E177.
    84. Zuo, X., et al., A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society, 2007. 129(5): p. 1042-1043.
    85. Lobas, M.A., et al., A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nature communications, 2019. 10(1): p. 711.
    86. Sukhova, E., D. Ratnitsyna, and V. Sukhov, Stochastic spatial heterogeneity in activities of H+-ATP-ases in electrically connected plant cells decreases threshold for cooling-induced electrical responses. International Journal of Molecular Sciences, 2021. 22(15): p. 8254.
    87. Zhu, C., et al., Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Materials International, 2019. 29(6): p. 628-640.
    88. Hu, P., et al., Silicene quantum dots: synthesis, spectroscopy, and electrochemical studies. Langmuir, 2018. 34(8): p. 2834-2840.
    89. Kadian, S., et al., Targeted bioimaging and sensing of folate receptor-positive cancer cells using folic acid-conjugated sulfur-doped graphene quantum dots. Microchimica Acta, 2020. 187: p. 1-10.
    90. Xu, J., et al., A turn-on fluorescence sensor for rapid sensing of ATP based on luminescence resonance energy transfer between upconversion nanoparticles and Cy3 in vivo or vitro. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022. 265: p. 120341.
    91. Fauchet, P.M., Light emission from Si quantum dots. materials today, 2005. 8(1): p. 26-33.
    92. Wu, J., et al., One-step synthesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging. RSC advances, 2015. 5(102): p. 83581-83587.
    93. Li, M., et al., A novel electrochemiluminescence sensor based on resonance energy transfer system between nitrogen doped graphene quantum dots and boron nitride quantum dots for sensitive detection of folic acid. Analytica Chimica Acta, 2019. 1090: p. 57-63.
    94. Xu, Z., et al., Disassembly of amphiphilic small molecular prodrug with fluorescence switch induced by pH and folic acid receptors for targeted delivery and controlled release. Colloids and Surfaces B: Biointerfaces, 2017. 150: p. 50-58.
    95. Jiang, S., et al., A fluorescent sensor for folic acid based on crown ether-bridged bis-tetraphenylethylene. Analyst, 2019. 144(8): p. 2662-2669.
    96. Zhang, W., et al., Carbon quantum dots as fluorescence sensors for label-free detection of folic acid in biological samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020. 229: p. 117931.
    97. Rajendran, M., et al., Imaging adenosine triphosphate (ATP). The Biological Bulletin, 2016. 231(1): p. 73-84.
    98. Ananthanarayanan, A., et al., Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale, 2015. 7(17): p. 8159-8165.
    99. Falzoni, S., G. Donvito, and F. Di Virgilio, Detecting adenosine triphosphate in the pericellular space. Interface focus, 2013. 3(3): p. 20120101.
    100. Song, Y., et al., Interactions of carbon quantum dots from roasted fish with digestive protease and dopamine. Food & Function, 2019. 10(6): p. 3706-3716.
    101. Zhang, X., et al., Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Analytical chemistry, 2015. 87(6): p. 3360-3365.
    102. Zhao, J., et al., Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors and Actuators B: Chemical, 2016. 223: p. 246-251.
    103. Yang, X., et al., Selective determination of dopamine in pharmaceuticals and human urine using carbon quantum dots as a fluorescent probe. Processes, 2021. 9(1): p. 170.
    104. S. Jiang, X. Hu, J. Qiu, H. Guo and F. Yang, A fluorescent sensor for folic acid based on crown ether-bridged bis-tetraphenylethylene. Analyst 2019. 144 (8) 2662-2669.
    105. B. Yang, X. Li, L. Wang, J. An, T. Wang, F. Zhang, et al. A water-stable MOF-AgClO4-abtz as fluorescent sensor for detection of folic acid based on inner filter effect, Talanta ,2020 217 121019.
    106. Y. Wang, M. Yang, Y. Ren and J. Fan Cu-Mn codoped ZnS quantum dots-based ratiometric fluorescent sensor for folic acid, Analytica Chimica Acta, 2018, 1040, 136-142

    QR CODE