Basic Search / Detailed Display

Author: 陸金正
LU, KING-JENG
Thesis Title: 知覺風險與科技接受模型及期望確認理論之結合 -以穿戴式智慧裝置為例
The Combination of Perceived Risks, Technology Acceptance Model, and Expectation Confirmation Theory —A Study in the Wearable Smart Device
Advisor: 梁瓊如
Chiung-Ju Liang
謝明華
Ming-Hua Hsieh
Committee: 梁瓊如
Chiung-Ju Liang
謝劍平
Chien-Ping Shieh
陳俊男
Chun-nan Chen
羅天一
Tainyi Luor
謝明華
Ming-Hua Hsieh
李宜熹
Yi-Hsi Lee
Degree: 博士
Doctor
Department: 管理學院 - 管理研究所
Graduate Institute of Management
Thesis Publication Year: 2020
Graduation Academic Year: 108
Language: 中文
Pages: 112
Keywords (in Chinese): 穿戴式智慧裝置科技接受模型知覺有用性知覺易用性期望確認理論知覺風險
Keywords (in other languages): Wearable smart devices, Technology acceptance model (TAM), Perceived usefulness, Perceived ease of use, Expectation confirmation theory (ECT), Perceived risk
Reference times: Clicks: 503Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report

  • 第壹章、 緒論…………………………………………………………………………………………………………………………………………………………………………………1 第一節、研究背景…………………………………………………………………………………………………………………………………………………………………………1 第二節、研究動機…………………………………………………………………………………………………………………………………………………………………………6 第三節、研究目的………………………………………………………………………………………………………………………………………………………………………10 第四節、研究流程………………………………………………………………………………………………………………………………………………………………………11 第貳章、 文獻探討……………………………………………………………………………………………………………………………………………………………………12 第一節、理性行為理論 (Theory of Reasoned Action, TRA)………………………………………………………………………12 第二節、計畫行為理論 (Theory of Planned Behavior, TPB)……………………………………………………………………15 第三節、科技接受模型 (Technology Acceptance Model, TAM)…………………………………………………………………18 第四節、第二代科技接受模型 (TAM2)與擴張式 TAM 模型……………………………………………………………………………………22 第五節、整合型科技模型 (UTAUT)……………………………………………………………………………………………………………………………………26 第六節、期望確認理論 (Expectation Confirmation Theory, ECT)………………………………………………………30 第七節、知覺風險 (Perceived Risk) …………………………………………………………………………………………………………………………34 第八節、科技接受模型與穿戴式智慧裝置…………………………………………………………………………………………………………………………38 第九節、科技接受模型與知覺風險之結合…………………………………………………………………………………………………………………………40 第十節、科技接受模型、知覺風險與期望確認理論之結合………………………………………………………………………………………45 第參章、 研究方法………………………………………………………………………………………………………………………………………………………………………48 第一節、研究變數與衡量題項…………………………………………………………………………………………………………………………………………………48 第二節、問卷設計與資料蒐集…………………………………………………………………………………………………………………………………………………56 第三節、資料分析方法………………………………………………………………………………………………………………………………………………………………58 第肆章、 研究結果………………………………………………………………………………………………………………………………………………………………………60 第一節、描述性統計分析…………………………………………………………………………………………………………………………………………………………60 第二節、信效度分析 ………………………………………………………………………………………………………………………………………………………………67 第三節、相關分析 ………………………………………………………………………………………………………………………………………………………………………71 第四節、模型路徑分析與假設檢定 ……………………………………………………………………………………………………………………………………74 第伍章、 結論與討論…………………………………………………………………………………………………………………………………………………………………80 第一節、研究結論…………………………………………………………………………………………………………………………………………………………………………80 第二節、理論貢獻…………………………………………………………………………………………………………………………………………………………………………84 第三節、研究限制與未來研究方向………………………………………………………………………………………………………………………………………86 第四節、管理意涵…………………………………………………………………………………………………………………………………………………………………………87 參考文獻……………………………………………………………………………………………………………………………………………………………………………………………89 附錄、本研究問卷…………………………………………………………………………………………………………………………………………………………………………97

    中文參考文獻
    朱文禎、陳哲賢(2007)。探討虛擬社群之知識分享行為:以線上遊戲為例。電子商
      務研究,5(1),55-80。
    吳明隆、涂金堂(2012)。 SPSS 與統計應用分析(二版)。臺北市:五南。

    英文參考文獻
    Abdullah, F., and Ward, R. (2016). Developing a General Extended Technology
      Acceptance Model for E-Learning (GETAMEL) by analysing commonly used
      external factors. Computers in Human Behavior, 56, 238-256.
    Adams, D. A., Nelson, R. R., and Todd, P. A. (1992). Perceived usefulness, ease of
      use, and usage of information technology: A replication. MIS Quarterly, 16 (2),
      227-247.
    Agarwal, R., and Venkatesh, V. (2002). Assessing a firm's web presence: A
      heuristic evaluation procedure for the measurement of usability. Information
      Systems Research, 13 (2), 168-186.
    Ajzen, H., and Hartshorne, R. (2008). Investigating faculty decisions to adopt web
      2.0 technologies: Theory and empirical tests. The Internet and Higher Education,
      11 (2),.71-80.
    Ajzen, I. (1985). From Intention to actions: A theory of planned behavior. In J.Kuhl
      and J. Beckman(Eds.), Actions-control : From Cognition to Behavior, Heidelberg,
      11-39.
    Ajzen, I. (1989). Attitude, Personality, and Behavior, Milton Keynes:Open University
      Press.
    Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and
      Human Decision Processes, 50, 179-211.
    Ajzen, I. (2002). Constructing a TPB Questionnaire: Conceptual and
      Methodological-Considerations. Retrieved from      
      http://wwwunix.oit.umass.edu/~aizen/pdf/tpb.measurement.pdf
    Ajzen, I., and Fishbein, M. (1980). Understanding Attitudes and Predicting Social
      Behavior, Engelwood Cliffs, N J: Prentice-Hall.
    Ajzen, I., Timko, C. and White, J. B. (1982). Self-monitoring and the attitude-
      behavior relation. Journal of Personality and Social Psychology, 42 (3),426-435.
    Al-Emran, M., Elsherif, H. M., and Shaalan, K. (2016). Investigating attitudes
      towards the use of mobile learning in higher education. Computers in Human
      behavior, 56, 93-102.
    Al-Emran, M., Mezhuyev, V., and Kamaludin, A. (2018). Technology Acceptance
      Model in M-learning context: A systematic review. Computers and
      Education, 125, 389-412.
    Arriba-Pérez, D., Caeiro-Rodríguez, M., and Santos-Gago, J. M. (2016). Collection
      and processing of data from wrist wearable devices in heterogeneous and
      multiple-user scenarios. Sensors, 16 (9), 1538.
    Atapattu, M., Sedera, D., Ravichandran, T., and Grover, V. (2016). Customers’
      view of agility: The expectation-confirmation theory perspective. Asia pacific
      journal of information systems, 26 (1), 80-108.
    Bauer, R.A. (1960). Consumer behavior as risk taking. In: Hancock, R.S., Ed.,
      Dynamic Marketing for a Changing World, Proceedings of the 43rd. Conference of
      the American Marketing Association, 389-398.
    Bentler,P. M.(1983).Some contributions to efficient statistics in structural models:
      Specification and estimation of moment structures. Psychometrika, 48 (4), 493–
      517.
    Berens, A., Kolb, S., and Haase, H. (2019). Critical success factors for digital
      platforms in B2B and B2C environments: an explicative multiple case study
      approach. International Journal of Business Forecasting and Marketing
      Intelligence, 5(3), 346-370.
    Bettman, J. R. (1975). Information integration in consumer risk perception: A
      comparison of two models of component conceptualization. Journal of Applied
      Psychology, 60 (3), 381–385.
    Bhattacherjee, A. (2001a). An empirical analysis of the antecedents of electronic
      commerce service continuance. Decision Support Systems, 32 (2), 201-214.
    Bhattacherjee, A. (2001b). Understanding information systems continuance: An
      expectation- confirmation model. MIS Quarterly, 25 (3), 351-370.
    Brill, T. M., Munoz, L., and Miller, R. J. (2019). Siri, Alexa, and other digital
      assistants: a study of customer satisfaction with artificial intelligence
      applications. Journal of Marketing Management, 35 (15-16), 1401-1436.
    Bunn, J. A.,Navalta,J. W.,Fountaine, C. J.,and Reece, J. D. (2018). Current state of
      commercial wearable technology in physical activity monitoring 2015–
      2017. International journal of exercise science, 11 (7), 503.
    Chang, S. E., Liu, A. Y., and Shen, W. C. (2017). User trust in social networking
      services: A comparison of Facebook and LinkedIn. Computers in Human
      Behavior, 69, 207-217.
    Chiou, J. S. (1998). Behavioral control on consumers’ purchase intentions: the
      moderating effects of product knowledge and attention to social comparison
      information.Proceedings of the National Science Council,Republic of China,
      Part C : Humanities and Social Sciences, 9 (2), 298-308.
    Chuttur, M.Y. (2009). Overview of the technology acceptance model: Origins,
      developments and future directions. Sprouts: Working Papers on Information
      Systems, 9 (37), http://sprouts.aisnet.org/9-37.
    Compeau, D. R., Higgins, C. A., and Huff, S. (1999). Social cognitive theory and
      individual reactions to computing technology: A longitudinal study. MIS
      Quarterly, 23 (2), .145-158.
    Cox, F. D. and Rich, U. S. (1964). Perceived risk and consumer decision-making:
      The case of telephone shopping. Journal of Marketing Research, 1 (4). 32-39.
    Cunningham, L.F., Gerlach,J., and Harper, M.D.(2005). Perceived risk and   
      ebanking services: An analysis from the perspective of the consumer. Journal of
      Financial services marketing, 10 (2), 165-178.
    Cunningham, S. M. (1967). The major dimensions of perceived risk. Risk Taking and
      Information Handling in Consumer Behavior, 82-108.
    Davis, F. D. (1993). User acceptance of information technology: system
      characteristics,user perceptions and behavioral impacts.International journal of
      man-machine studies, 38 (3), 475-487.
    Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User acceptance of
      computer technology: A comparison of two theoretical models. Management
      Science, 35 (8), 982-1003.
    Dayour, F., Park, S., and Kimbu, A. N. (2019). Backpackers’ perceived risks
      towards smartphone usage and risk reduction strategies: A mixed methods
      study. Tourism Management, 72, 52-68.
    Dehghani, M., Kim, K. J., and Dangelico, R. M. (2018). Will smartwatches last?
      Factors contributing to intention to keep using smart wearable
      technology. Telematics and Informatics, 35 (2), 480-490.
    Dowling, R. and Stalin, R. (1994). A model of perceived risk and intended   
      riskhandling activity. Journal of Consumer Research, 21 (6), 110-134.
    Featherman, M. S., and Pavlou, P. A. (2003). Predicting e-services adoption: a
      perceived risk facets perspective. International journal of human-computer
      studies, 59 (4), 451-474.
    Fishbein, M., and Ajzen, I. (1975). Beliefs, Attitude, Intentions and Behavior: An
      Introduction to Theory and Research, Addition-Wesley, Boston, MA.
    Gartner Inc. (2019). Gartner says global end-user spending on wearable devices to
      total $52 billion in 2020. Retrieved from
      https://www.gartner.com/en/newsroom/press-releases/2019-10-30-gartner-
      says-global-end-user-spending-on-wearable-dev
    Ghuman, M. K., and Mann, B. J. S. (2018). Profiling customers based on their social
      risk perception: a cluster analysis approach. Metamorphosis, 17(1), 41-52.
    Haghi, M., Thurow, K., and Stoll, R. (2017). Wearable devices in medical internet
      of things: scientific research and commercially available devices. Healthcare
      informatics research, 23 (1), 4-15.
    Hair, J.F.J., Anderson, R. E., Tatham, R. L., and Black, W. C. (1998). Multivariate
      Data Analysis 5th Edition. Upper Saddle River: Prentice - Hall Inc.
    Hamm, B. C. and Perry, M. (1969). Canonical analysis of relations between
      socioeconomic risk and personal influence in purchase decisions. Journal of
      Marketing Research, 6 (8), 351–354.
    Hao, Y., and Helo, P. (2017). The role of wearable devices in meeting the needs of
      cloud manufacturing: A case study. Robotics and Computer-Integrated
      Manufacturing, 45, 168-179.
    Hildebrand, K., King-Shier, K., Venturato, L., and Tompkins-Lane, C. (2019). Will
      Women Interact with Technology to Understand Their Cardiovascular Risk
      and Potentially Increase Activity?. BioResearch open access, 8 (1), 94-100.
    Horobin, G., and McIntosh, J. (1983). Time, risk and routine in general practice 1.
      Sociology of Health and Illness, 5 (3), 312-331.
    Hu, L.-t., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance
      structure analysis: Conventional criteria versus new alternatives. Structural
      Equation Modeling, 6 (1), 1–55.
    IDC. (2019). Worldwide wearables shipments surge 94.6% in 3Q 2019 led by
      expanding hearables market. Retrieved from
      https://www.idc.com/getdoc.jsp?containerId=prUS45712619
    Igbaria, M., and Tan, M. (1997). The consequences of information technology
      acceptance on subsequent individual performance. Information and
      Management, 32 (3), 113-121.
    Igbaria, M., Parasuraman, S., and Baroudi, J. J. (1996). A motivational model of
      microcomputer usage. Journal of Management Information Systems, 13 (1), 127-
      143.
    Igbaria, M., Zinatelli, N., Cragg, P., and Cavaye, A. L. M. (1997), Personal
      computing acceptance factors in small firms: A structural equation model. MIS
      Quarterly, 21 (3), 279-305.
    Jacoby, J. and Kaplan, L.B. (1972). The components of perceived risk. Proceedings of
      the Annual Conference of the Association for Consumer Research, 10, 382-393.
    Kaewkannate, K., and Kim, S. (2016). A comparison of wearable fitness
      devices. BMC public health, 16 (1), 433.
    Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.
    Kim, D.J., Ferrin, D.L., and Rao, H.R. (2008). A trust-based consumer decision-  
      making model in electronic commerce: The role of trust, perceived risk, and
      their antecedents. Decision support systems, 44 (2), 544-564.
    Kwon, Y. H. (1991). The influence of the perception of mood and self-
      consciousness on the selection of clothing. Clothing and Textiles Research
      Journal, 9 (4), 41-46.
    Legris, P., Ingham, J., and Collerette, P. (2003). Why do people use information
      technology? A critical review of the technology acceptance model. Information
      and Management, 40, 191–204.
    Lenggogeni, S., Ritchie, B. W., and Slaughter, L. (2019). Understanding travel risks
      in a developing country: a bottom up approach. Journal of Travel and Tourism
      Marketing, 36 (8), 941-955.
    Lim, Y. J., Osman, A., Salahuddin, S. N., Romle, A. R., and Abdullah, S. (2016).
      Factors influencing online shopping behavior: the mediating role of purchase
      intention. Procedia economics and finance, 35 (5), 401-410.
    Liu, D., and Guo, X. (2017). Can trust and social benefit really help? Empirical
      examination of purchase intentions for wearable devices. Information
      Development, 33 (1), 43-56.
    Liu, F., and Li, T. (2018). A clustering-anonymity privacy-preserving method for
      wearable iot devices. Security and Communication Networks, 2018.
    Liu, H., Lobschat, L., Verhoef, P. C., and Zhao, H. (2019). App adoption: The effect
      on purchasing of customers who have used a mobile website
      previously. Journal of Interactive Marketing, 47, 16-34.
    Michler, O., Decker, R., and Stummer, C. (2019). To trust or not to trust smart
      consumer products: a literature review of trust-building factors. Management
      Review Quarterly, 1-30.
    Moore, G. C. and Benbasat, I. (1991). Development of an instrument to measure
      the perceptions of adopting an information technology innovation. Information
      Systems Research, 2 (3), 192-222.
    Mou, J., Shin, D. H., and Cohen, J. F. (2017). Trust and risk in consumer acceptance
      of e-services. Electronic Commerce Research, 17 (2), 255-288.
    Murray, K. B. (1991). A test of services marketing theory: consumer information
      acquisition activities. Journal of marketing, 55 (1), 10-25.
    Nam, S. J. (2019). The effects of consumer empowerment on risk perception and
      satisfaction with food consumption. International Journal of Consumer Studies,
      43 (5), 429-436.
    Nikou, S. A., and Economides, A. A. (2017). Mobile-based assessment:
      Investigating the factors that influence behavioral intention to use. Computers
      and Education, 109, 56-73.
    Nunnally, J. C. (1978). Psychometric Theory (2nd ed.). New York: McGraw-Hill.
    Oghuma, A. P., Libaque-Saenz, C. F., Wong, S. F., and Chang, Y. (2016). An
      expectation-confirmation model of continuance intention to use mobile instant
      messaging. Telematics and Informatics, 33 (1), 34-47.
    Oliver, R. L., and DeSarbo, W. S. (1988). Response determinants in satisfaction
      judgments. Journal of Consumer Research, 14 (4), 495–507.
    Oliver, R. L., Balakrishnan, P. V., and Barry, B. (1994). Outcome satisfaction in
      negotiation: A test of expectancy disconfirmation. Organizational Behavior and
      Human Decision Processes, 60 (2), 252–275.
    Oliver, R.L. (1980). A cognitive model of the antecedents and consequences of
      satisfaction decisions. Journal of Marketing Research, 17, 460-469.
    Ortlinghaus, A., Zielke, S., and Dobbelstein, T. (2019). The impact of risk
      perceptions on the attitude toward multi-channel technologies. The
      International Review of Retail,Distribution and Consumer Research,29(3),262-284.
    Pena‐Marin, J., and Wu, R. (2019). Disconfirming Expectations: Incorrect Imprecise
      (vs. Precise) Estimates Increase Source Trustworthiness and Consumer
      Loyalty. Journal of Consumer Psychology, 29 (4), 623-641.
    Peter, J. P., and Ryan, M.J. (1976). An investigation of perceived risk at the brand
      level. Journal of Marketing Research, 13 (2), 184–188.
    Preacher, K. J., and Hayes, A. F. (2004). SPSS and SAS procedures for estimating
      indirect effects in simple mediation models. Behavior Research Methods,
      Instruments and Computers, 36 (4), 717–731.
    Rehman, A., and Jamil, S. A. (2016). Influence of Income and Occupation on
      Consumers’ Susceptibility to Reference Group Demands on Brand Choice
      Decisions. International Review of Management and Marketing, 6 (2), 376-382.
    Riemenschneider, C. K., Harrison,D. A. and Mykytyn, Jr P. P. (2003).
      Understanding IT adoption decisions in small business: Integrating current
      theories. Information and Management, 40, 269-285.
    Roselius, T. (1971). Consumer rankings of risk reduction methods. Journal of
      Marketing, 35 (1), 56–61.
    Scherer, R., Siddiq, F., and Tondeur, J. (2019). The technology acceptance model
      (TAM): A meta-analytic structural equation modeling approach to explaining
      teachers’ adoption of digital technology in education. Computers and
      Education, 128, 13-35.
    Seeger, M. K., Kemper, J., and Brettel, M. (2019). How information processing and
      mobile channel choice influence product returns: An empirical
      analysis. Psychology and Marketing, 36 (3), 198-213.
    Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., and
      Seneviratne, A. (2017). A survey of wearable devices and challenges. IEEE
      Communications Surveys and Tutorials, 19 (4), 2573-2620.
    Sepasgozar, S. M., Hawken, S., Sargolzaei, S., and Foroozanfa, M. (2019).
      Implementing citizen centric technology in developing smart cities: A model
      for predicting the acceptance of urban technologies. Technological Forecasting
      and Social Change, 142, 105-116.
    Shamdasani, P., Mukherjee, A., and Malhotra, N. (2008). Antecedents and
      consequences of service quality in consumer evaluation of self-service internet
      technologies. The Service Industries Journal, 28 (1), 117-138.
    Sheppard, B. H., Hartwick, J., and Warshaw,P. R. (1988). The theory of reasoned
      action: A meta-analysis of past research with recommendations for
      modifications and future research. Journal of Consumer Research, 15, 325-343.
    Sheth, J. N., and Venkatesan, M. (1968). Risk-reduction processes in repetitive
      consumer behavior. Journal of Marketing research, 5 (3), 307-310.
    Smith, T. J. (2008). Senior citizens and e-commerce websites: The role of perceived
      usefulness,perceived ease of use, and web site usability. Informing Science: the
      International Journal of an Emerging Transdiscipline, 11, 59-83.
    Szajna, B. (1996). Empirical evaluation of the revised technology acceptance
      model. Management Science, 42 (1), 85-92.
    Taylor, S. and Todd, P. A. (1995a). Assessing IT usage: The role of prior
      experience. MIS Quarterly, 19 (4), 561-570.
    Taylor, S. and Todd, P. A. (1995b). Understanding information technology usage:
      A test of competing models. Information Systems Research, 6 (2), 144-176.
    Taylor, S. and Todd, P. A. (1995c). Decomposition and cross effects in the theory of
      planned behavior: A study of consumer adoption intentions. International
      Journal of Research in Marketing, 12 (2), 137-155.
    Veloutsou, C., and Bian, X. (2008). A cross‐national examination of consumer
      perceived risk in the context of non‐deceptive counterfeit brands. Journal of
      Consumer Behaviour: An International Research Review, 7 (1), 3-20.
    Venkatesh, V. (2000). Determinants of perceived ease of use: integrating control,
      intrinsic motivation, and emotion into the technology acceptance model.
      Information Systems Research, 11 (4), 342-365.
    Venkatesh, V., and Davis, F. (1996). The model of the antecedents of perceived
      ease of use: Development and test. Decision Sciences, 27 (3), 451-481.
    Venkatesh, V., and Davis, F. D. (2000). A theoretical extension of the technology
      acceptance model: Four longitudinal field studies. Management Science, 46 (2),
      186-204.
    Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance
      of information technology: Toward a unified view. MIS Quarterly, 27 (3), 425-
      478.
    Wen, D., Zhang, X., and Lei, J. (2017). Consumers’ perceived attitudes to wearable
      devices in health monitoring in China: A survey study. Computer methods and
      programs in biomedicine, 140, 131-137.
    Wu, J., Li, H., Lin, Z., and Zheng, H. (2017). Competition in wearable device
      market: the effect of network externality and product compatibility. Electronic
      Commerce Research, 17 (3), 335-359.
    Xu, J. D., Cenfetelli, R. T., and Aquino, K. (2016). Do different kinds of trust
      matter? An examination of the three trusting beliefs on satisfaction and
      purchase behavior in the buyer–seller context. The Journal of Strategic
      Information Systems, 25 (1), 15-31.
    Yang, H., Yu, J., Zo, H., and Choi, M. (2016). User acceptance of wearable devices:
      An extended perspective of perceived value. Telematics and Informatics, 33 (2),
      256-269.
    Yang, Y., Asaad, Y., and Dwivedi, Y. (2017). Examining the impact of gamification
      on intention of engagement and brand attitude in the marketing
      context. Computers in Human Behavior, 73, 459-469.
    Zhang, Y., Wan, G., Huang, L., and Yao, Q. (2015). Study on the impact of
      perceived network externalities on consumers’ new product purchase
      intention. Journal of Service Science and Management, 8 (1), 99-106.
    Zikmund, G. W. and Scott, E. J. (1974). A multivariate analysis of perceived risk
      self-confidence and information sources. in NA - Advances in Consumer
      Research Volume 01, eds. Scott Ward and Peter Wright, Ann Abor, MI :
      Association for Consumer Research, 406-416.

    無法下載圖示 Full text public date 2025/07/16 (Intranet public)
    Full text public date This full text is not authorized to be published. (Internet public)
    Full text public date This full text is not authorized to be published. (National library)
    QR CODE