簡易檢索 / 詳目顯示

研究生: 林大為
Ta-Wei Lin
論文名稱: 廣義空間調變應用於正交分頻多工系統與單載波分頻多重存取系統之研究
Research on Generalized Spatial Modulation for Orthogonal Frequency Division Multiplexing and Single Carrier Frequency Division Multiple Access
指導教授: 張立中
Li-Chung Chang
口試委員: 曾德峰
Der-Feng Tseng
劉馨勤
Hsin-Chin Liu
陳永芳
Yung-Fang Chen
曾恕銘
Shu-Ming Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 多輸入多輸出空間調變廣義空間調變正交分頻多工系統單載波分頻多重存取系統
外文關鍵詞: MIMO, Spatial Modulation, Generalized Spatial Modulation, OFDM, SC-FDMA
相關次數: 點閱:403下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空間調變(Spatial Modulation, SM)是近幾年很常被應用於多輸入多輸出 (Multiple-Input Multiple-Output, MIMO)系統的技術之一,其特性為同一時間只利用多天線中的單一天線做傳輸,天線選擇之索引與原先傳送的符元皆可為傳輸位元所使用,用意是增加頻譜效益(Spectral Efficiency)與提升能源使用效率(Energy Efficiency),並且有多種與其概念相同的多天線技術被提出,如廣義空間調變(GSM)、空間位移鍵入(SSK)、空時位移鍵入(STSK)等。

    廣義空間調變(Generalized Spatial Modulation, GSM)則是空間調變的一種延伸,同一時間利用大於一根天線做傳輸,並且傳送相同的符元,利用不同天線的排列組合數,使得天線總數不再需要是二的次方數,在天線數量的選擇上可以更為靈活。

    本文採用已經被廣泛應用在許多通訊技術上的正交分頻多工系統(Orthogonal Frequency Division Multiplexing, OFDM)與第四代無線通訊的長期演進技術進階版(Long Term Evolution-Advanced, LTE-Advanced)所提出的上行系統中,採用加入有預編碼功能離散傅利葉轉換(Discrete Fourier Transform, DFT)而獲得低峰均值功率比(Peak to Average Power Ratio, PAPR)特性的單載波分頻多重存取系統(Single Carrier Frequency Division Multiple Access, SC-FDMA),與空間調變技術的結合,希望利用MIMO技術增進其位元錯誤率(Bit Error Rate, BER)效能與頻譜效益。

    本論文討論SM與OFDM和SCFDMA系統之結合,並提出GSM-OFDM與GSM-SCFDMA系統架構,分析各系統在不同天線數量下與同位元傳輸速率下不同通道的BER效能,並且討論加入SM與GSM技術之PAPR效能。


    Spatial Modulation(SM) is one of the most adopted Multiple-Input Multiple-Output(MIMO) techniques in recent years. Its characteristics are only activating one single antenna at the same time, antenna index and transmitted symbol and both being used by the transmission bit. The intention is to increase the spectral efficiency and energy efficiency, there are many other MIMO techniques have been proposed based on the same concept, such as Generalized Spatial Modulation(GSM), Space Shift Keying(SSK), Space Time Shift Keying(STSK) and so on.

    Generalized Spatial Modulation is an extended version of Spatial Modulation, it activated more than one antenna at the same time, using number of combinations of different antennas, which makes the antenna number no longer has to be limited by the power of two. Generalized Spatial Modulation has more flexibility than original Spatial Modulation.

    In this thesis, we adopt Orthogonal Frequency Division Multiplexing(OFDM) which is widely used in wireless communication systems and Single Carrier Frequency Division Multiple Access(SC-FDMA) proposed by LTE-A, which adopt Discrete Fourier Transform (DFT) as a precoding scheme and known for its low Peak to Average Power Ratio (PAPR) characteristic as the uplink system. We combine these two systems with GSM, in order to have better bit error rate(BER) and spectral efficiency.

    In this thesis, we discussed combinations of Spatial Modulation with OFDM and SC-FDMA and proposed GSM-OFDM and GSM-SCFDMA. We will simulate all the systems BER performance in different number antenna case and modulation type through different channel model. Also we discussed the PAPR performance after adding SM and GSM.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 VIII 第1章 序論 1 1.1 研究動機與目的 1 1.2 論文架構 3 第2章 相關理論介紹與文獻回顧 4 2.1 空間調變技術介紹 4 2.1.1 空間調變 4 2.1.2 廣義空間調變 7 2.2 空間調變正交分頻多工系統 9 2.2.1 傳送端架構 10 2.2.2 接收端架構 11 2.3 空間調變單載波分頻多重存取系統 13 2.3.1 傳送端架構 13 2.3.2 接收端架構 14 2.4 峰均值功率比 16 2.5 EPA、EVA、TDL-A通道模型 17 第3章 提出的系統架構 20 3.1 廣義空間調變正交分頻多工系統 20 3.2 廣義空間調變單載波分頻多重存取系統 25 第4章 模擬結果與討論 28 4.1 SM-OFDM、SM-SCFDMA之BER效能 28 4.1.1 在不同天線組合下之BER效能 29 4.1.2 在不同調變下之BER效能 33 4.2 GSM-OFDM之BER效能 36 4.2.1 在不同觸發天線下之BER效能 37 4.2.2 在不同天線組合下之BER效能 39 4.2.3 在不同調變下之BER效能 41 4.3 GSM-SCFDMA之BER效能 43 4.3.1 在不同觸發天線下之BER效能 43 4.3.2 在不同天線組合下之BER效能 44 4.3.3 在不同調變下之BER效能 45 4.4 SM與GSM系統於同bits/Symbol下之BER效能 46 4.4.1 在5 bits/symbol下之BER效能 47 4.4.2 在6 bits/symbol下之BER效能 48 4.4.3 在7 bits/symbol下之BER效能 49 4.5 GSM-OFDM與GSM-SCFDMA之BER效能 50 4.5.1 在EPA通道之BER效能 51 4.5.2 在EVA通道之BER效能 52 4.5.3 在TDL-A通道之BER效能 53 4.6 SM與GSM系統之PAPR效能 55 4.6.1 SM-OFDM與GSM-OFDM之PAPR效能 55 4.6.2 SM-SCFDMA與GSM-SCFDMA之PAPR效能 56 第5章 結論與未來研究方向 60 參考文獻 61

    [1] R. Mesleh, H. Haas, C. W. Ahn, and S. Yun, "Spatial Modulation - A New Low Complexity Spectral Efficiency Enhancing Technique," in 2006 First International Conference on Communications and Networking in China, 25-27 Oct. 2006.
    [2] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, "Generalised spatial modulation," in 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, 7-10 Nov. 2010.
    [3] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, "Spatial Modulation," IEEE Transactions on Vehicular Technology, vol. 57, no. 4, pp. 2228-2241, 2008.
    [4] M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, "Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation," Proceedings of the IEEE, vol. 102, no. 1, pp. 56-103, 2014.
    [5] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, "Spatial modulation: optimal detection and performance analysis," IEEE Communications Letters, vol. 12, no. 8, pp. 545-547, 2008.
    [6] S. Ganesan, R. Mesleh, H. Ho, C. W. Ahn, and S. Yun, "On the Performance of Spatial Modulation OFDM," in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 29 Oct.-1 Nov. 2006.
    [7] Y. Ping, X. Yue, Z. Bin, and L. Shaoqian, "Initial performance evaluation of spatial modulation OFDM in LTE-based systems," in 2011 6th International ICST Conference on Communications and Networking in China (CHINACOM), 17-19 Aug. 2011.
    [8] D. Sinanović, G. Šišul, and B. Modlic, "Low-PAPR Spatial Modulation for SC-FDMA," IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 443-454, 2017.
    [9] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, "LTE-advanced: next-generation wireless broadband technology [Invited Paper]," IEEE Wireless Communications, vol. 17, no. 3, pp. 10-22, 2010.
    [10] M. I. Kadir, S. Sugiura, J. Zhang, S. Chen, and L. Hanzo, "OFDMA/SC-FDMA Aided Space–Time Shift Keying for Dispersive Multiuser Scenarios," IEEE Transactions on Vehicular Technology, vol. 62, no. 1, pp. 408-414, 2013.
    [11] Evolved Universal Terrestrial Radio Access (E-UTRA),Physical Channels and Modulation, ETSI TS 136, V12.3.0, 2014.
    [12] H. G. Myung and D. J. Goodman, Single Carrier FDMA: A New Air Interface for Long Term Evolution. 2008.
    [13] Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception, G. T. 36.104, Feb, 2015.
    [14] 5G;Study on channel model for frequencies from 0.5 to 100 GHz, G. T. 38.901, July, 2018.
    [15] A. Kunle, Least Squares Interpolation Methods for LTE System Channel Estimation over Extended ITU Channels. 2013.
    [16] R. Jain, "Channel Models A Tutorial.," WiMAX Forum AATG, Feb. 2007.

    無法下載圖示 全文公開日期 2024/08/19 (校內網路)
    全文公開日期 2029/08/19 (校外網路)
    全文公開日期 2029/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE