簡易檢索 / 詳目顯示

研究生: 游函諺
Han-Yen Yu
論文名稱: 智慧空間與多媒體共享管理之系統建置
Toward Constructing a Smart Space and Multimedia Sharing Management System
指導教授: 陳建中
Jiann-Jone Chen
口試委員: 杭學鳴
Hsueh-Ming Hang
郭天穎
Tien-Ying Kuo
郭重顯
Chung-Hsien Kuo
項天瑞
Tien-Ruey Hsiang
劉馨勤
Hsin-Chin Liu
陳建中
Jiann-Jone Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 141
中文關鍵詞: 動態調整群播樹個人化推薦模組群體推薦模組RFID室內定位系統
外文關鍵詞: Multi-Parametered Adaptive Tree, Personal Recommendation Module, Group Recommendation Module, RFID Real-time Location System
相關次數: 點閱:198下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運用與提升多媒體應用以增進生活便利為近來技術發展主流,人們利用新穎技術運用各種領域並達成不同目的。人們為了尋求更方便更聰明地生活型態,便研究分析自己的生活、行動、行為模式,引領相關智慧型空間的研究發展。除了連結家庭中的各種資訊與媒體的內部網路,也需將媒體互動的功能在網際網路間實現。本論文之媒體共享管理平台整合之三種模組功能:(一) 整合多媒體串流傳輸與數位保護關鍵技術,本功能透過整合內容傳遞網路(Content Delivery Network, CDN)與點對點(Peer-to-Peer, P2P)傳輸架構,針對多參數考量以動態調整群播樹(Multi-Parametered Adaptive Tree, MPAT)達穩定傳輸與減少節點斷線頻率;(二) 基於前項網路媒體系統,我們開發依收視群喜好推薦節目之互動電視系統,以人機介面辨識使用者身分,針對使用者個人及群體進行不同之推薦組合,採混合式推薦(hybrid recommender)法結合內容導向(Content-Based, CB)及協合過濾(Collaborative Filtering, CF)法之優點。個人化推薦模組更可透過更新演算法,利用個人觀看歷史記錄逐次更新使用者喜好;(三) 運用於智慧空間之無線射頻辨識(Radio Frequency Identification, RFID)之即時定位系統(Real-Time Location System, RTLS),設計分群演算法(LOCate TRacking tag through rEader power control and Candidate region intersection, LOCTREC)以減少辨識參考點,接著使用攝影機擷取場景影像讓使用者得知物體情境。實驗結果顯示:(一) 所設計用於P2P-IPTV之MPAT演算法確實可以減少傳輸之延遲,並提升媒體群播樹傳輸之穩定度;(二) 我們所設計的混合式推薦模組可以更準確的預測群體對節目的評比,且在訓練過程中,選擇適當的學習速率將有利於訓練權重值之精確度;(三) LOCTREC方法可以有效濾除無相關之參考標籤,以增加定位準確度。本論文所研究開發的相關技術,在於提供使用者一個不受時、空,以及裝置限制的媒體及物件之存取環境。


    With the advance of multimedia codec technologies and Internet prevalence, multimedia has been regarded as one of the major information communication tools. Development of a sharing management platform focused on the integrating various media information into a single user interface. In this thesis, three modules have been developed according to different application requirements: 1) Developing a Peer-to-Peer IPTV (P2P) to provide network media service. To improve the reliability of an IPTV multicast tree, a Multi-Parametered Adaptive Tree (MPAT) algorithm is proposed to reduce the frequency of peer disruption. A DRM server and IPMP-Terminal have also been developed to provide a complete P2P-IPTV service platform; 2) Based on the IPTV platform, an efficient front end TV program recommender has been developed. We proposed to estimate inter-user dominance factor through the neural network algorithm, based on practical group user rating records. Both Content-Based (CB) and user-based Collaborative Filtering (CF) algorithms are adopted to predict group users’ preference for program recommendation. In addition, an active face recognition module has been developed and integrated with the recommender system to provide a user-friendly interface; 3) For smart space applications, a Real-Time Location Systems (RTLS) based on Radio Frequency Identification (RFID) techniques is proposed. A new control method, LOCate TRacking tag through rEader power control and Candidate region intersection, LOCTREC, has been proposed to improve the RTLS estimation accuracy. Multi-readers were operated with multi-power level control to progressively refine the target tag region for accurate location estimation. Experiments showed that: 1) Compared to previous researches, the practical P2P-IPTV system is carried out based on theoretical analysis to improve perception QoS. The proposed P2P routing strategy can reduce the transmission delay, and improve the reliability of a multicast tree; 2) The proposed group user program recommender can achieve higher accuracy in recommending video programs for group users, in additional to a user-friendly recommendation function; 3) Experiments showed that the estimation error of the proposed LOCTREC is 70% smaller than its counterpart of the LANDMARC which deploys regularly spaced reference tags to determine signal strength. The developed system methods in this thesis enable users to access to information any-time, any-place and through any-devices.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Smart Home Description . . . . . . . . . . . . . . . .. . 2 1.1.2 Human-Machine Interface (HMI) . . . . . . . . . . . . . . 2 1.1.3 Smart Wheelchair Description . . . . . . . . . . . . . .. 4 1.2 Organization and Contribution of the Thesis . . . . . . . . 5 2 Media Sharing Management System. . . . . . . . . . . . . . .. 7 2.1 Smart Media Center and Applications . . . . . . . . . . . . 11 2.1.1 Media Center Descriptions . . . . . . . . . . . . . . . . 11 2.1.1.1 P2P Network Topology . . . . . . . . . . . . . . . . . 13 2.1.1.2 Scalability . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1.3 Security . . . . . . . . . . . . . . . . . . . . . . .. 14 2.1.1.4 Peer Linking Management . . . . . . . . . . . . . . . 16 2.1.1.5 Heterogeneity . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 IPTV and P2P . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2.1 System Framework . . . . . . . . . . . . . . . . . . . 17 2.1.2.2 Multi-Parameterized Adaptive Tree Algorithm . . . . . 19 2.1.2.3 Scalability . . . . . . . . . . . . . . . . . . . . . . 22 2.1.3 Experimental Study . . . . . . . . . . . . . . . . . .. . 22 2.1.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . 22 2.1.3.2 Simulation Results . . . . . . . . . . . . . . . . . . 24 2.2 DRM and IPMP Terminal . . . . . . . . . . . . . . . . . . . 28 3 IPTV and Program Recommendation System . . . . . . . . .. . . 33 3.1 Active Face Recognition based Human-machine Interface . . . 35 3.1.1 Facial Image Descriptors . . . . . . . . . . . . . . . .. 35 3.1.1.1 Local Binary Pattern . . . . . . . . . . . . . . . . . 36 3.1.1.2 Multi-scale Block LBP . . . . . . . . . . . . . . . . . 37 3.1.2 Active Face Recognition . . . . . . . . . . . . . . . . . 38 3.1.2.1 Face Registration . . . . . . . . . . . . . . . . . . . 39 3.1.2.2 Face Recognition for Natural Interface . . . . . . .. 42 3.1.2.3 Database Updating . . . . . . . . . . . . . . . . . . . 43 3.1.2.4 Speedup Processing . . . . . . . . . . . . . . . . . . 44 3.1.3 Experimental Study and Performance Evaluation . . . . . . 45 3.1.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . 45 3.1.3.2 Recognition Accuracy . . . . . . . . . . . . . . . . . 46 3.1.3.3 Improve Stability from Updating . . . . . . . . . . . 46 3.2 IPTV Program Recommendation System . . . . . . . . . . .. . 49 3.2.1 Adaptive Recommender System . . . . . . . . . . . . . . . 51 3.2.1.1 Personalized Recommendation Model . . . . . . . .. . 51 3.2.1.2 Content-Based and Collaborative-Filtering . . . . . . 51 3.2.1.3 Hybrid and Personal Recommendation Method . . . . . 52 3.2.1.4 Personal Preferences Updating . . . . . . . . . . . . 52 3.2.2 Group Recommendation Model . . . . . . . . . . . . . . .. 53 3.2.2.1 Group Prediction Model . . . . . . . . . . . . . . . . 53 3.2.2.2 Back-Propagation Neural Network Model . . . . . . . . 54 3.2.3 Experimental Study and Performance Evaluation . . . . . . 55 3.2.3.1 User Rating Setup . . . . . . . . . . . . . . . . . .. 55 3.2.3.2 Performance Evaluation . . . . . . . . . . . . . . . . 56 4 Smart Wheelchair and Smart Space Applications . . . . . . . . 59 4.1 Real-time Object Location System . . . . . . . . . . . . . 59 4.1.1 Object Location Identification Approaches . . . . . . . . 62 4.1.2 The Challenges of Real-time Location System . . . . . . . 66 4.1.2.1 Practical System Signal Processing Characteristics . . .66 4.1.2.2 Challenges of RFID-based Location Identification . . . 66 4.1.3 The Proposed Tag Location Estimation Method (LOCTREC) . . 68 4.1.3.1 Initial Setup . . . . . . . . . . . . . . . . . . . . . 70 4.1.3.2 Target Object Location Estimation . . . . . . . . . . .71 4.1.3.3 Visual Rendering . . . . . . . . . . . . . . . . . . . 73 4.1.4 System Implementation and Performance Evaluation . . ... 75 4.1.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . 75 4.1.4.2 Simulated RTLS Performance Evaluation . . . . . . . . . 79 4.1.4.3 Practical RTLS Performance Evaluation . . . . . . . . . 81 4.2 Seamless Tele-health Care . . . . . . . . . . . . . . . . . 82 4.2.1 System Architecture . . . . . . . . . . . . . . . . . . . 85 4.2.1.1 Physiological monitoring module . . . . . . . . . . . . 87 4.2.1.2 Medicare module . . . . . . . . . . . . . . . . . . . .88 4.2.2 Visual Analysis . . . . . . . . . . . . . . . . . . . . . 89 4.2.2.1 User Motion Detection . . . . . . . . . . . . . . . . . 89 4.2.2.2 Motion Training . . . . . . . . . . . . . . . . .. . . 93 4.2.2.3 Motion Identification . . . . . . . . . . . . . . . . . 93 4.2.3 Experimental Study and Performance Evaluation . . . . . . 94 4.3 Vision Assistant Module . . . . . . . . . . . . . . . . . . 98 4.3.1 Human Tracking Algorithm . . . . . . . . . . . . . . . .. 98 4.3.2 Human Tracking Using a PTZ Camera . . . . . . . . . . . . 101 4.4 Wireless Remote Control . . . . . . . . . . . . . . . . . . 102 5 Conclusions & Future Researches . . . . . . . . . . . . . . .104 5.1 Contributions of the Thesis . . . . . . . . . . . . . . . . 104 5.1.1 Media Sharing Management System . . . . . . . . . . . . . 104 5.1.2 IPTV and Recommendation System . . . . . . . . . . . . .. 104 5.1.3 Smart Wheelchair and Smart Space Applications . . . .. . 105 5.2 Future Research Directions . . . . . . . . . . . . . . . . 106 References . . . . . . . . . . . . . . . . . . . . . .. .. . .108 Appendix A Questions Proposed on Oral Defense . . . . . .. . . .114

    [1] T. Mori et al, “Automatic human life summarization system in sensory living space,” IEEE Conf. Systems, Man and Cybernetics, vol. 2, pp. 1583-1588, 2004.
    [2] W.-H. Liau et al, “Inhabitants tracking system in a cluttered home environment via floor load sensors,” IEEE Trans. Automation Science and Engineering, vol. 5, issue 1, pp. 10-20, 2008.
    [3] S. S. Intille, “Designing a home of the future,” IEEE Pervasive Computing, vol. 1, issue 2, pp. 76-82, 2002.
    [4] S.-O. Lee et al, “A spatial history storing system based on Intelligent Space,” Annual Conf. IEEE Industrial Electronics Society, pp. 3397-3402, 2008.
    [5] Y. -S. Yoo and J. -D. Huh, “Bedside sensor platform architecture for UbiSAS in ubiquitous sensor network,” International Conf. Advanced Communication Technology, vol. 1, pp. 515-518, 2006.
    [6] H.-Y. Yu et al, “Toward developing a human-environment interaction system for smart wheel chairs,” 25th World Battery, Hybrid & Fuel Cell Electric Vehicle Symp. & Exhibition, Nov. 5-9, 2010.
    [7] Open IPTV Forum e.V., “Functional architecture,” ver. 2, Sept. 2009.
    [8] R. K. P. Mok et al, “Measuring the quality of experience of HTTP video streaming,” IEEE International Symposium on Integrated Network Management, pp.
    485-492, May 2011.
    [9] J. De Vriendt et al, “Model for estimating QoE of video delivered using HTTP adaptive streaming,” IEEE International Symposium on Integrated Network
    Management, pp. 1288-1293, May 2013.
    [10] T. Hossfeld, S. Egger, R. Schatz, and M. Fiedler, “Initial delay vs. interruptions: Between the devil and the deep blue sea,” Fourth International Workshop on Quality of Multimedia Experience, pp. 1-6, Jul. 2012.
    [11] Y. Huang et al, “Challenges, design and analysis of a large-scale p2p-vod system,” ACM SIGCOMM computer communication review, vol. 38, no. 4, Aug. 2008.
    [12] Y.-N. Huang et al, “Challenges of P2P streaming technologies for IPTV services,” Proc. of IPTV Workshop, International World Wide Web Conference, May 2006.
    [13] S. Liu et al, “Performance bounds for peer-assisted live streaming,” ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 1, Jun. 2008.
    [14] M. Guo and M. Ammar, “Scalable live video streaming to cooperative clients using time shifting and video patching,” Proc. IEEE Conf. Computer and Communications Societies (INFOCOM), vol. 3, Mar. 2004.
    [15] G. Tan and S. A. Jarvis, “Improving the fault resilience of overlay multicast for media streaming,” IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 6, 2007.
    [16] Y. H. Kim et al, “Efficient tree management for resilient overlay multicast,” IEEE Int. Conf. Advanced Communication Technology, vol. 1, Feb. 2009.
    [17] M.-H. Hsu et al, “An adaptive approach to optimize tree-based overlay for P2P streaming,” Journal Advances in Computer Networks, vol. 1, no. 1, March 2013.
    [18] G. Huang, “PPLive: A practical P2P live system with huge amount of users.” Proc. of the ACM SIGCOMM Workshop on Peer-to-Peer Streaming and IPTV Workshop, Sept. 2007.
    [19] W. Liang et al, “On characterizing PPStream: measurement and analysis of P2P-IPTV under large-scale broadcasting,” IEEE Conf. Global Telecomm., Oct. 2009.
    [20] S. Xie et al, “Coolstreaming: design, theory, and practice,” IEEE Trans. Multimedia, Dec. 2007.
    [21] X.-Y. Zhang et al, “Coolstreaming/DONet: a data-driven overlay network for peer-to-peer live media streaming,” Proc. IEEE Conf. Computer and Communications Societies (INFOCOM), Mar. 2005.
    [22] B. Pourebrahimi et al, “A survey of peer-to-peer networks,” Annual Workshop on Circuits, 2005.
    [23] P. Baccichet et al, “Low-delay peer-to-peer streaming using scalable video coding,”in Packet Video, pp. 173-181, Nov. 2007.
    [24] D. Xu et al, “Analysis of a CDN-P2P hybrid architecture for cost-effective streaming distribution,” ACM J. Multimedia System, vol. 11, no. 4, pp. 585-599, 2006.
    [25] H. Yin et al, “Truststream: a secure and scalable architecture for large-scale Internet media streaming,” IEEE Trans. Circuits and Systems for Video Technology, vol. 18, no. 12, pp. 1692-1702, Dec. 2008.
    [26] E. Akyol et al, “A flexible multiple description coding framework for adaptive peer-to-Peer video streaming,” IEEE Journal Sel. Topics Signal Process, vol. 1, no. 2, pp. 231-245, Aug. 2007.
    [27] T. Leyvand et al, “Kinect identity: technology and experience,” IEEE Computer, pp. 94-96, 2011.
    [28] T. Ojala et al, “A comparative study of texture measures with classification based on feature distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51-59, 1996.
    [29] T. Ahonen et al, “Face description with local binary patterns: application to face recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, Dec. 2006.
    [30] S.-C. Liao et al, “Learning multi-scale blocklocal binary patterns for face recognition,” Proc. International Conf. Advances in Biometrics, vol. 4642, pp. 828-837, 2007.
    [31] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” IEEE Conf. Computer Vision and Pattern Recognition, pp. 511-518, 2001.
    [32] M. Martinez-Zarzuela et al, “AdaBoost face detection on the GPU using Haar-like features,” International Work-conference on the Interplay Between Natural and Artificial Computation, Part II, LNCS 6687, pp. 333-342, 2011.
    [33] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” Lecture Notes in Computer and Information Science, vol. 4321, pp. 325-341, 2007.
    [34] B. P. Knijnenburg et al, “Explaining the user experience of recommender systems,” User Modeling and User-Adapted Interaction, vol. 22, pp. 1-64, Oct. 2012.
    [35] B. M. Kim et al, “A new approachfor combining content-based and collaborative filters,” Journal of Intelligence Information Systems, vol. 27, no. 1, pp. 79-91, Jul. 2006.
    [36] J. Masthoff, “Group recommender systems: combining individual models,” Recommender Systems Handbook, pp. 677-702, 2011.
    [37] D. E. Rumelhart et al, “Learning representations by back-propagating errors,” Nature vol. 323, pp. 533-536, Oct. 1986.
    [38] M. Boden, “A guide to recurrent neural networks and backpropagation,” The DALLAS project. Report from the NUTEK supported project AIS-8, SICS.Holst: Application of Data Analysis with Learning Systems, 2001.
    [39] GroupLens Research, https://movielens.org/
    [40] K. H. Lin et al, “An adaptive correlation-based group recommendation system,” Intelligent Signal Processing and Communications Systems, pp. 1-5, Dec. 2011.
    [41] A. Lehto et al, “Passive UHF RFID in paper industry: challenges, benefits and the application environment,” IEEE Trans. Automation Science and Engineering, vol. 6, no. 1, Jan. 2012.
    [42] D.-Q. Zhang et al, “TASA: tag-free activity sensing using RFID tag arrays,” IEEE Trans. Parallel &Distributed System, vol. 22, no. 4, 2011.
    [43] A. Baumann et al, “A review and comparison of measures for automatic video surveillance systems,” EURASIP Journal Image and Video Processing, vol. 19, no. 5, pp. 329-343, 2008.
    [44] J. S. Choi, “Passive UHF RFID-based localization using detection of tag interference on smart shelf,” IEEE Trans. Sys., Man, Cybern., Syst., Part C: Applications and Reviews, vol. 42, no. 2, Mar. 2012.
    [45] M. N. K. Boulos and G. Berry, “Real-time locating systems (RTLS) in healthcare: a condensed primer,” International Journal Health Geographics, Jun. 2012.
    [46] H.-Y. Yu and J.-J. Chen, “An intelligent space location identification system based on passive RFID tags,” Int. Conf. Machine Learning & Cybernetics, vol. 1, 2014.
    [47] T. Huang et al, “A practical localization algorithm based on wireless sensor networks,” IEEE/ACM Int. Conf. Cyber, Physical and Social Computing (CPSCom), Dec. 2010.
    [48] A. Aboodi and T.-C. Wan, “Evaluation of WiFi-based indoor (WBI) positioning algorithm,” Third FTRA Int. Conf. Mobile, Ubiquitous, and Intelligent Computing (MUSIC), Jun. 2012.
    [49] S. Shao and R. J. Burkholder, “Item-level RFID tag location sensing utilizing reader antenna spatial diversity,” IEEE Sensors Journal, vol. 13, no. 2, Oct. 2013.
    [50] M. Bouet and A. L. Dos Santos, “RFID tags: positioning principles and localization techniques,” Procs. IFIP Wireless Days, pp. 1-5, Nov. 2008.
    [51] A. Parr et al, “Inverse SAR approach for localization of moving RFID tags”, Procs. IEEE Int. Conf. RFID, pp. 104-109, 2013.
    [52] H. Jeffrey and B. Gaetano, “SpotON: an indoor 3D location sensing technology based on RF signal strength,” Proc. UW CSE Technical Report, Univ.Washington, Seattle, WA, Feb. 2000.
    [53] L.M. Ni et al, “LANDMARC: indoor location sensing using active RFID,” J. Wireless Networks - Special Issue: Pervasive Computing and Communications, vol. 10, no. 6, Nov. 2004.
    [54] S.-L. Ting et al, “The study on using passive RFID tags for indoor positioning,”Int. Journal Engineering Business Management, pp. 9-15, 2011.
    [55] K. Han and S. H. Cho, “Advanced LANDMARC with adaptive k-nearest algorithm for RFID location system,” IEEE Int. Conf. Network Infrastructure and Digital Content, Sept. 2010.
    [56] Y.-Y. Zhao et al, “VIRE: Active RFID-based localization using virtual reference elimination,” Int. Conf. Parallel Processing, Sept. 2007.
    [57] ITU-R, Rec. P.618-11, “Propagation data and prediction methods required for the design of earth-space telecommunication systems,” Nov. 2013.
    [58] J. Serra, “Introduction to mathematical morphology,” Computer Vision Graphics and Image Processing, vol. 35, pp. 283-305, 1986.
    [59] J. Baina and J. Dublet, “Automatic focus and iris control for video cameras,” IEEE, Image Processing and its Applications, pp. 232-235, Jul. 1995.
    [60] C.-H. Yeh and S.-F. Su, “Enhance LANDMARC from the fundamentals,” Int. Conf. Advanced Robotics and Intelligent Systems, May 2013.
    [61] Z.-H. Li et al, “Advances in RFID-ILA: the past, present and future of RFID-based indoor location algorithms,” IEEE Chinese Control and Decision Conf., 2012.
    [62] R. Wootton, “Telemedicine in the national health service”, Journal the Royal Society of Medicine, vol. 91, pp. 614-621, 1998.
    [63] C. Lin, “Applying telecommunication technology to healthcare delivery,” IEEE EMB Magazine, vol. 18, no. 4, pp. 28-31, 1999.
    [64] C.-T. Lin et al, “Automatic bio-signal supervising system for medical care,” United States Patent Application, US20090259138 A1, Oct. 2009.
    [65] I. Jeong et al, “Development of bio-signal measurement system for vehicles,” Int. Conf. on Convergence Information Technology, Nov. 2007.
    [66] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-Line learning and an application to boosting,” Jour. of Computer and System Sciences, pp. 119-139, Aug. 1997.
    [67] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
    [68] L.-H. Zou and Y.-C. Liu, “A new algorithm of counting human based on segmentation of human faces in color image,” Int. Conf. on Computational Intelligence and Security, pp. 505-509, 2009.
    [69] A. Chen et al, “Face detection technology based on skin color segmentation and template matching,” Int. Work. on Edu. Tech. and Computer Science, pp. 708-711, 2010.
    [70] P. Peer et al, “Human skin colour clustering for face detection,” EUROCON International Conf. on Computer as a Tool, 2003.
    [71] T. Cover and P. Hart, “Nearest neighbor: pattern classification,” IEEE Trans. on Information Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.

    QR CODE