簡易檢索 / 詳目顯示

研究生: 黃裕誠
Yu-Cheng Huang
論文名稱: 高效率邊界導通模式之升壓型功率因數修正器研製
Study and Implementation of a Boost Power Factor Corrector with High-Efficiency Boundary Conduction Mode
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 黃仲欽
Jonq-Chin Hwang
鄒明璋
Ming-Chang Tsou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 功率因數修正器邊界導通模式氮化鎵
外文關鍵詞: Power Factor Corrector, Boundary Conduction Mode, Gallium Nitride(GaN)
相關次數: 點閱:255下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研製一高效率邊界導通模式之升壓型功率因數修正器,經由系統架構動作推導和設計電路元件,運用軟體SIMetrix/SIMPLIS建置邊界導通模式之功率因數修正器之模型,驗證系統設計參數之可行性,並且分析系統中之元件損耗,最後研製一輸入交流電壓90V~264V,輸出直流電壓385V之200W升壓型功率因數修正器,使用通嘉科技LD7593DA控制器來實現於邊界導通模式操作,並使用第三代半導體中的氮化鎵功率開關,解決高切換頻率所造成的損耗及降低導通損失,其實測結果顯示,在最低輸入交流電壓90V及輸出滿載時,使用氮化鎵功率開關之整體效率較使用MOSFET的效率高出4.219%,其四點平均效率為95.076%;在最高輸入交流電壓264V及輸出滿載時,則是高出1.92%,其四點平均效率98.024%,與損耗分析效率差異為0.1744%。系統於不同輸入交流電壓,滿載效率最高可達98.34%、最高功率因數可達0.997。


This thesis presents the development of a high-efficiency boost power factor corrector operating in boundary conduction mode. The system architecture and circuit components are derived and designed, and the model of the power factor corrector operating in boundary conduction mode is built using the SIMetrix/SIMPLIS software. The feasibility of the system design parameters is verified, and the component losses in the system are analyzed. Finally, a 200W boost power factor corrector is developed with an input AC voltage range of 90V to 264V and an output DC voltage of 385V. The boundary conduction mode operation is achieved using the LD7593DA controller from Leadtrend, and gallium nitride power technology from the third-generation semiconductors are utilized to mitigate losses caused by high switching frequency and reduce conduction losses. The experimental results demonstrate that, at the lowest input AC voltage of 90V and full load output, the overall efficiency of using gallium nitride power switches surpasses the efficiency achieved with MOSFETs by 4.219%. The average efficiency over four data points is measured at 95.076%. Similarly, at the highest input AC voltage of 264V and full load output, the efficiency is higher by 1.92%, resulting in an average efficiency of 98.024%. The difference between the efficiency obtained through loss analysis and the measured efficiency is 0.1744%.The system achieves a maximum efficiency of 98.34% and a maximum power factor of 0.997 at different input AC voltages and full load.

摘要 I Abstract II 誌謝 III 目錄 IV 符號索引 VII 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 3 1.3 系統架構之規格與特色 5 1.4 本文大綱 7 第二章 氮化鎵元件與功率因數修正器介紹 8 2.1 前言 8 2.2 氮化鎵元件介紹 8 2.3 主動式功率因數修正器之電路架構 14 2.4 主動式功率因數修正電路之控制方法 15 2.4.1 連續導通模式 15 2.4.2 不連續導通模式 22 2.4.3 邊界導通模式 25 2.5 升壓型功率因數修正器電路推導 31 第三章 功率因數修正器控制之最佳化設計 36 3.1 前言 36 3.2 本文控制IC介紹 36 3.3 電路主要元件之參數 45 3.3.1 輸入電感器設計 46 3.3.2 輸出電容設計 47 3.3.3 輸出二極體選擇 48 3.3.4 功率開關的選擇 48 3.3.5 輸入電壓回授電阻選擇 49 3.3.6 輸出電壓回授電阻選擇 50 3.4 功率因數修正器控制之損耗分析 51 3.4.1 損耗來源與公式推導 51 3.4.2 功率因數修正器損耗分析 66 第四章 模擬與實驗結果 76 4.1 前言 76 4.2 電路模擬 76 4.3 實測波形與結果 82 4.3.1 功率因數修正器實測波形 83 4.3.2 波谷切換量測波形 86 4.3.3 效率與功率因數及切換頻率實測結果統計 90 4.4 實測結果與損耗分析之比較 98 4.5 硬體電路實體圖 99 第五章 結論與未來展望 100 5.1 結論 100 5.2 未來展望 101 參考文獻 103

[1] Mishra, U. K., Shen, L., Kazior, T. E., & Wu, Y. F. (2008). GaN-Based RF power devices and amplifiers. Proceedings of the Ieee, 96(2), 287-305. doi: 10.1109/Jproc.2007.911060
[2] Chen, K. J., Haberlen, O., Lidow, A., Tsai, C. L., Ueda, T., Uemoto, Y., & Wu, Y. F. (2017). GaN-on-Si Power Technology: Devices and Applications. Ieee Transactions on Electron Devices, 64(3), 779-795. doi: 10.1109/ted.2017.2657579
[3] Mohan, N., Undeland, T. M., & Robbins, W. P. (2003). Power electronics: converters, applications, and design: John wiley & sons.
[4] Huber, L., Irving, B. T., & Jovanovic, M. M. (2009). Effect of Valley Switching and Switching-Frequency Limitation on Line-Current Distortions of DCM/CCM Boundary Boost PFC Converters. Ieee Transactions on Power Electronics, 24(1-2), 339-347. doi: 10.1109/Tpel.2008.2006053
[5] Lai, Z. R., & Smedley, K. M. (1998). A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator. Ieee Transactions on Power Electronics, 13(3), 501-510. doi: Doi 10.1109/63.668113
[6] Yao, K., Ruan, X. B., Mao, X. J., & Ye, Z. H. (2011). Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter. Ieee Transactions on Industrial Electronics, 58(5), 1856-1865. doi: 10.1109/Tie.2010.2052538
[7] 鄒明璋(2015)。抑制電能轉換器傳導EMI之新型抖頻技術。博士論文,國立臺灣科技大學電機工程系,台北市。
[8] Chen, Y. L., & Chen, Y. M. (2016). Line Current Distortion Compensation for DCM/CRM Boost PFC Converters. Ieee Transactions on Power Electronics, 31(3), 2026-2038. doi: 10.1109/Tpel.2015.2434885
[9] Bianco, A., Adragna, C., & Scappatura, G. (2014). Enhanced constant-on-time control for DCM/CCM boundary boost PFC pre-regulators: Implementation and performance evaluation. Paper presented at the 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014.
[10] Wang, J. Z., Eto, H., & Kurokawa, F. (2020). Optimal Zero-Voltage-Switching Method and Variable on-Time Control for Predictive Boundary Conduction Mode Boost PFC Converter. Ieee Transactions on Industry Applications, 56(1), 527-540. doi: 10.1109/Tia.2019.2955431
[11] Lai, C.-M., Yang, M.-J., & Liang, S.-K. (2014). A zero input current ripple ZVS/ZCS boost converter with boundary-mode control. Energies, 7(10), 6765-6782.
[12] Lee, F. C. (1988). High-frequency quasi-resonant and multi-resonant converter technologies. Paper presented at the Proceedings. 14 Annual Conference of Industrial Electronics Society.
[13] Mao, S., Ramabhadran, R., Popovic, J., & Ferreira, J. A. (2015). Investigation of CCM boost PFC converter efficiency improvement with 600V wide band-gap power semiconductor devices. Paper presented at the 2015 IEEE Energy Conversion Congress and Exposition (ECCE).
[14] Huang, Q., Yu, R., Ma, Q., & Huang, A. Q. (2018). Predictive ZVS Control With Improved ZVS Time Margin and Limited Variable Frequency Range for a 99% Efficient, 130-W/in 3 MHz GaN Totem-Pole PFC Rectifier. Ieee Transactions on Power Electronics, 34(7), 7079-7091.
[15] Korada, N., & Ayyanar, R. (2019). A 3kW, 500 kHz E-mode GaN HEMT based Soft-switching Totem-pole PFC. Paper presented at the 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA).
[16] Zhang, C., Yin, X., Tang, S., Wang, D., Zhen, R., Shen, Z. J., & Wang, J. (2018). A new energy management method for high power density boost cascaded buck-boost PFC converter. Paper presented at the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC).
[17] Wu, Y., Ren, X., Li, K., Zhang, Z., & Chen, Q. (2019). An Accurate Variable On-time Control for 400Hz CRM Boost PFC Converters. Paper presented at the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC).
[18] Ren, X., Wu, Y., Zhang, Z., & Chen, Q. (2019). Accurate operation analysis based variable on-time control for 360–800 Hz CRM boost PFC converters. Ieee Transactions on Industrial Electronics, 67(8), 6845-6853.
[19] 珠海镓未来科技有限公司。(2023)。氮化鎵成就綠色能源未來。https://www.big-bit.com/meeting/2022led/data/02.pdf
[20] Semiconductor, N. (2018). NV6117 Datasheet.
[21] AG, I. T. (2023). GaN HEMT – Gallium Nitride Transistor. from https://www.infineon.com/cms/en/product/power/gan-hemt-gallium-nitride-transistor/#!products
[22] Corporation, E. P. C. (2023). Gallium Nitride (GaN) Power Devices. from https://epc-co.com/epc/products/gan-fets-and-ics
[23] Systems, G. (2023). GaN Systems – Island Technology. from https://gansystems.com/newsroom/gan-systems-island-technology/
[24] Tom Ribarich, S. D. S. E., Navitas Semiconductor. (2023). Make it Easy, with GaN Power ICs. from https://navitassemi.com/make-it-easy-with-gan-power-ics/
[25] Transphorm. (2023). SuperGaN® Technology Difference. from https://www.transphormusa.com/en/gan-technology/
[26] Nexperia. (2023). GaN FETs. From https://www.nexperia.com/products/gan-fets.html#/p=1,s=0,f=,c=,rpp=,fs=0,sc=,so=,es=
[27] HART, D. W., & OU, S.-Y. (2011). Power electronics (Vol. 166): McGraw-Hill New York.
[28] Rossetto, L., Spiazzi, G., & Tenti, P. (1994). Control techniques for power factor correction converters. Proc. of Power Electronics, Motion Control (PEMC), 1310-1318.
[29] 梁適安(2008)。交換式電源供給器之理論與實務設計。全華科技圖書出版。
[30] Leadtrend. (2022). LD7593DA Datasheet.
[31] Incorporated, D. (2023). GBU810 Datasheet.
[32] Incorporated, D. (2023). LTTH806LF Datasheet.
[33] Corporation, T. (2003). Ferrite(For Switching Power Supplies Introduction).
[34] Intertechnology, V. (2013). Aluminum Capacitor.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE