簡易檢索 / 詳目顯示

研究生: Olivia Christy Tarigan
Olivia Christy Tarigan
論文名稱: 數位同軸全像微粒循跡測速儀用於研究微流道中縱向脊柱誘發的 3-D 流動型態
Study of 3-D Flow Patterns Induced by Longitudinal Spine in a Microchannel Using Digital In-line Holographic Micro-Particle Tracking Velocimetry
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 陳品銓
Pin-Chuan Chen
曾修暘
Hsiu-Yang Tseng
蔣雅郁
Ya-Yu Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 136
中文關鍵詞: 三維聲射流數字同軸全像顯微鏡 (DIHM)微粒循跡測速儀 (PTV)
外文關鍵詞: 3D Acoustic Streaming, Digital In-line Holographic Microscopy (DIHM), Particle Tracking Velocimetry (PTV)
相關次數: 點閱:334下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一種新型的微流控裝置,透過位於微流道頂壁上的縱向脊柱以誘發三維的聲射流 (Acoustic streaming) 流動。數位同軸全像微粒影像測速儀 (DIHμ-PTV) 技術被用來觀察及評估聲射流的微粒軌跡與三維速度場。此外,本研究還研究了兩個縱向脊柱尖端之間的不同間距和操作參數的影響,因為聲射流的流動模式對於提高依賴聲射流的應用的效率起著至關重要的作用。使用 DIHμ-PTV 技術,本研究成功地將縱向脊柱附近三維聲射流的流動型態可視化。實驗結果顯示,與沒有縱向脊柱的微通道相比,以12 kHz 頻率和 20 Vpp 電壓可以讓微通道中的單個縱向脊柱有效地產生振盪的三維聲射流,且能形成两個反向旋轉的滾動渦旋,其最大微粒速度可達 300 μm/s。 根據內插的三維速度場結果顯示微粒的速度隨著接近縱向脊柱而增加,最高可達 260 μm/s,反之則隨遠離縱向脊柱而減小。微流道中兩個縱向脊柱的設置也可以引致反向旋轉滾動的三維聲射流。 縱向脊柱的間距影響所生成的聲射流的速度。比較 3 種情況(DS1、DS2 和 DS3)下的最大速度大小顯示, 設置DS3 可以在所有觀測區域(A、B 和 C)中誘發最高流速,分別達到 354 μm/s、338 μm/s 、 和 341 μm/s 。此外,增加縱向脊柱的間距可以最小化各個聲射流區域之間的相互干擾,並為每個滾動聲射流區域提供了更多空間發展與持續。根據這些結果,DS3 是三個設置中的最優化設計。二維流場可視化的結果則顯示這種三維聲射流可以在流速高達 80 μL/min 的主流下與之共存。 且可在 80 μL/min 的主流流速以60 Vpp 的驅動電壓達到穩健的聲射流,因為增加電壓會引致更強烈的聲射流。本研究所提出的微通道設置可以作為一個值得期待的主動混合機制,且有潛力運用在各種不同的微流體應用。


    This study presents a novel microfluidic device to induce three-dimensional (3D) acoustic streaming flow patterns by a longitudinal spine on the microchannel’s top wall. The acoustic streaming flow's particle trajectories and 3D velocity field are observed and evaluated using the Digital In-line Holographic Micro-Particle Tracking Velocimetry (DIHμ-PTV) technique. In addition, this study investigates the influence of different spacing between the tips of two longitudinal spines and the operating parameters, as the flow pattern of acoustic streaming plays a crucial role in enhancing the efficiency of applications relying on acoustic streaming. Using the DIHμ-PTV technique, this study successfully visualized the flow patterns of 3D acoustic streaming near the longitudinal spine. The results show that with 12 kHz frequency and 20 Vpp voltage oscillation, the single longitudinal spine in the microchannel can effectively generate 3D acoustic streaming flow compared to a microchannel without a longitudinal spine and creates two counter-rotating rolling vortices with maximum particle velocity reaching 300 μm/s. The interpolated 3D velocity fields reveal that the velocity of the particles increases as they approach the longitudinal spine up to 260 μm/s and, conversely, decreases as they move away from it. The two longitudinal-spine configurations in a microchannel can also induce 3D acoustic streaming patterns of counter-rotating rolling motion. The spacing between the two longitudinal spines affects the velocity of the generated acoustic streaming. The comparison of the maximum velocity magnitude from 3 cases (DS1, DS2, and DS3) shows that DS3 can induce the highest streaming velocity in all observation areas (A, B, and C) by reaching 354 μm/s, 338 μm/s, and 341 μm/s, respectively. Moreover, increasing the distance between the tip of the longitudinal spine can minimize interference between each streaming zone and provides more space for the rolling streaming patterns to develop and persist. Based on these results, case DS3 is considered the optimal design of the 3 cases. 2-D flow visualization results show that the 3D acoustic streaming flows can coexist with a main flow with a flow rate of up to 80 μL/min, and robust acoustic streaming in a flow rate of 80 μL/min can be achieved by increasing the driving voltage up to 60 Vpp, as increasing voltages lead to more intense acoustic streaming. The proposed microfluidic device can be a promising mechanism for active mixing and has the potential for various microfluidic applications.

    ABSTRACT i 摘要 iii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xi LIST OF SYMBOLS xvi CHAPTER 1: INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Review 3 1.2.1 Acoustic Streaming and Its Applications 3 1.2.2 Acoustic Streaming Patterns 5 1.2.3 Sharp-edge Structure to Generate Acoustic Streaming 8 1.2.4 Three-Dimensional Acoustic Streaming 12 1.2.5 3D-Particle Tracking Techniques for Microflow Measurements 15 1.3 Objectives 17 1.4 Thesis Structure 18 CHAPTER 2: MATERIALS AND METHOD 19 2.1 Principles of DIHM 19 2.2 Experimental Methods 21 2.2.1 Microchannel Fabrication Process 21 2.2.2 Working Fluids and Tracking Particles 23 2.2.3 Boundary layer thickness 25 2.2.4 DIHμ-PTV Experimental Setup 25 2.2.5 Experimental Procedure to Perform Acoustic Streaming 32 2.3 Image Processing 33 2.3.1 Image Pre-processing 34 2.3.2 Image Reconstruction 35 2.3.3 Find the Particle Center Location 37 2.3.4 Fitting the Depth Position 38 2.3.5 The Inverse Calculation for Finding the Particle Location 40 2.3.6 Analysis of Particle Trajectory 41 2.4 Experimental conditions 44 CHAPTER 3: RESULTS AND DISCUSSIONS 47 3.1 The effect of a single longitudinal spine 47 3.2 The effect of different configurations between the tip of two longitudinal spines 58 3.3 The effect of volume flow rates 96 3.4 The effect of voltage 99 3.5 Limitations in this study 102 CHAPTER 4: CONCLUSIONS AND FUTURE WORKS 103 4.1 Conclusions 103 4.2 Future Works 105 REFERENCES 106 APPENDIX 111

    1. Bachman, H., et al., An acoustofluidic device for efficient mixing over a wide range of flow rates. Lab Chip, 2020. 20(7): p. 1238-1248.
    2. Endaylalu, S.A. and W.H. Tien, Mixing enhancement in T-junction microchannel with acoustic streaming induced by triangular structure. Biomicrofluidics, 2021. 15(3).
    3. Zhang, C.Y., et al., Mixing intensification using sound-driven micromixer with sharp edges. Chemical Engineering Journal, 2021. 410.
    4. Zhang, C.Y., et al., Acoustic streaming near a sharp structure and its mixing performance characterization. Microfluidics and Nanofluidics, 2019. 23(9).
    5. Huang, P.H., et al., A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip, 2014. 14(22): p. 4319-23.
    6. Ozcelik, A. and Z. Aslan, A practical microfluidic pump enabled by acoustofluidics and 3D printing. Microfluid Nanofluidics, 2021. 25(1): p. 5.
    7. Zhou, R. and C. Wang, Acoustic bubble enhanced pinched flow fractionation for microparticle separation. Journal of Micromechanics and Microengineering, 2015. 25(8).
    8. Sajeesh, P. and A.K. Sen, Particle separation and sorting in microfluidic devices: a review. Microfluidics and Nanofluidics, 2014. 17(1): p. 1-52.
    9. Jalal, J. and T.S.H. Leong, Microstreaming and Its Role in Applications: A Mini-Review. Fluids, 2018. 3(4).
    10. Wiklund, M., R. Green, and M. Ohlin, Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab on a Chip, 2012. 12(14): p. 2438-2451.
    11. Zhang, P., et al., Acoustic Microfluidics. Annual Review of Analytical Chemistry, 2020. 13(1): p. 17-43.
    12. Yeo, L.Y. and J.R. Friend, Surface Acoustic Wave Microfluidics. Annual Review of Fluid Mechanics, 2014. 46(1): p. 379-406.
    13. Wu, M., et al., Acoustofluidic separation of cells and particles. Microsystems & Nanoengineering, 2019. 5(1): p. 32.
    14. Xie, Y., H. Bachman, and T.J. Huang, Acoustofluidic methods in cell analysis. TrAC Trends in Analytical Chemistry, 2019. 117: p. 280-290.
    15. Barani, A., et al., Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosensors and Bioelectronics, 2016. 85: p. 714-725.
    16. Caprini, D., et al., A T-junction device allowing for two simultaneous orthogonal views: application to bubble formation and break-up. Microfluid Nanofluidics, 2018. 22(8): p. 85.
    17. Garstecki, P., et al., Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up (vol 6, pg 437, 2006). Lab on a Chip, 2006. 6(5): p. 693-693.
    18. Hsieh, S.S., J.W. Lin, and J.H. Chen, Mixing efficiency of Y-type micromixers with different angles. International Journal of Heat and Fluid Flow, 2013. 44: p. 130-139.
    19. Wu, J.R., Acoustic Streaming and Its Applications. Fluids, 2018. 3(4).
    20. Ovchinnikov, M., J. Zhou, and S. Yalamanchili, Acoustic streaming of a sharp edge. J Acoust Soc Am, 2014. 136(1): p. 22-9.
    21. Huang, P.H., et al., An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip, 2013. 13(19): p. 3847-52.
    22. Wang, Z., et al., Cell lysis via acoustically oscillating sharp edges. Lab Chip, 2019. 19(24): p. 4021-4032.
    23. Muller, P.B., et al., Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Physical Review E, 2013. 88(2).
    24. Eckart, C., Vortices and Streams Caused by Sound Waves. Physical Review, 1948. 73: p. 68-76.
    25. Rayleigh, L., On the Circulation of Air Observed in Kundt's Tubes, and on Some Allied Acoustical Problems. Philosophical Transactions of the Royal Society of London, 1884. 175: p. 1-21.
    26. Hermann Schlichting, K.G., Boundary-Layer Theory. 9 ed. 2017: Springer Berlin, Heidelberg.
    27. Lei, J.J., et al., Effects of micron scale surface profiles on acoustic streaming. Microfluidics and Nanofluidics, 2018. 22(12).
    28. Nama, N., et al., Investigation of acoustic streaming patterns around oscillating sharp edges. Lab on a Chip, 2014. 14(15): p. 2824-2836.
    29. Ozcelik, A., et al., An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls. Analytical Chemistry, 2014. 86(10): p. 5083-5088.
    30. Rasouli, M.R. and M. Tabrizian, An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. Lab on a Chip, 2019. 19(19): p. 3316-3325.
    31. Zhou, Y.F., Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation. Biomedical Microdevices, 2022. 24(1).
    32. Chen, Z.Z., et al., Sharp-edge acoustic microfluidics: Principles, structures, and applications. Applied Materials Today, 2021. 25.
    33. Zhang, C.Y., et al., Unveiling of the mechanisms of acoustic streaming induced by sharp edges. Physical Review E, 2020. 102(4).
    34. Alghane, M., et al., Streaming phenomena in microdroplets induced by Rayleigh surface acoustic wave. Journal of Applied Physics, 2011. 109(11).
    35. Marin, A., et al., Three-Dimensional Phenomena in Microbubble Acoustic Streaming. Physical Review Applied, 2015. 3(4).
    36. Bolanos-Jimenez, R., et al., Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry. Journal of Fluid Mechanics, 2017. 820: p. 529-548.
    37. Marefati, S., M. Ghassemi, and V. Ghazizadeh, Investigation of effective parameters on streaming-induced acoustophoretic particle manipulation in a microchannel via three-dimensional numerical simulation. Physics of Fluids, 2022. 34(1).
    38. Cierpka, C., et al., On the calibration of astigmatism particle tracking velocimetry for microflows. Measurement Science and Technology, 2011. 22(1).
    39. Wang, H.L. and P.J. Zhao, Tracking microparticle motions in three-dimensional flow around a microcubic array fabricated on the wall surface. Microfluidics and Nanofluidics, 2018. 22(3).
    40. Lee, S.J., G.Y. Yoon, and T. Go, Deep learning-based accurate and rapid tracking of 3D positional information of microparticles using digital holographic microscopy. Experiments in Fluids, 2019. 60(11).
    41. Hung, S.-P., Development of Digital In-line Holographic Micro Particle Tracking Velocimetry and Its Application in Acoustofluidics, Master, Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 2022. [Online]. Available: https://hdl.handle.net/11296/w7s6qf.
    42. Chen, Y.-Y., Performance Comparison of Digital Defocusing Micro-Particle Tracking Velocimetry and Digital In-Line Holographic Micro Particle Tracking Velocimetry for Measuring Three-Dimensional Flow Fields of Acoustofluidic Devices, Master, Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 2022. [Online]. Available: https://hdl.handle.net/11296/qbhu5t.
    43. Chen, P.C., et al., An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate. International Journal of Advanced Manufacturing Technology, 2014. 71(9-12): p. 1623-1630.
    44. Vo, T.N.A. and P.-C. Chen, Maximizing interfacial bonding strength between PDMS and PMMA substrates for manufacturing hybrid microfluidic devices withstanding extremely high flow rate and high operation pressure. Sensors and Actuators A: Physical, 2022. 334: p. 113330.
    45. Lin, M.-H., A Study of Acoustic Streaming Flows Induced by Single Asymmetric Triangular Structure, Master, Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, 2019. [Online]. Available: https://hdl.handle.net/11296/zzyacd.
    46. Landau, L.D. and E.M. Lifshit͡s, Fluid mechanics. 2nd , repr. with corrections ed. Course of theoretical physics v. 6. 2006, Oxford: Butterworth-Heinemann. xiii, 539 p. : ill.
    47. Pereira, F., et al., Two-frame 3D particle tracking. Measurement Science and Technology, 2006. 17(7): p. 1680-1692.
    48. Lei, Y.C., et al., A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method. Experiments in Fluids, 2012. 53(5): p. 1251-1268.

    QR CODE