簡易檢索 / 詳目顯示

研究生: 廖伯彰
Bor-jang Liaw
論文名稱: 以核殼式多面體複合奈米金屬修飾製備電流式感測器
Fabrication of Amperometric Sensors based on Core/Shell Multilateral Nano-Metallic Composites
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 黃炳照
Bing-joe Hwang
李振綱
Cheng-kang Lee
劉懷勝
Hwai-shen Liu
王勝仕
Steven S.-S. Wang
郭瑋軒
Wei-hsuan Kuo
王文
Wun Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 145
中文關鍵詞: 核殼式奈米金屬材料雙氧水氧化反應膽固醇生物感測器
外文關鍵詞: Nano-metallic material, cholesterol biosensor.
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人體膽固醇的含量與心血管疾病息息相關,當體內的膽固醇超過一定含量時,會在心臟或腦的血管壁上累積,使血液流動遭受阻塞造成病變,所以即時監測膽固醇含量是相當重要的課題。膽固醇與膽固醇氧化酶反應會產生副產物雙氧水,因此本研究利用金屬奈米粒子增加催化雙氧水的能力,製備出高靈敏度的雙氧水感測器,另一方面藉由酵素具良好的專一性,將膽固醇氧化酶修飾於電極,建立具高精確度、高選擇性且實際應用的電流式酵素型膽固醇感測器。
    本研究主要分為兩個部分:第一部分為製備金屬奈米粒子,並應用於雙氧水感測器。根據文獻指出,相較於球形奈米粒子,多邊形的奈米粒子具有較多的高活性低配位原子,能提供較多的催化活性位置,故本研究合成二十四面體金奈米粒子 (trioctahedral AuNCs, 24-AuNCs)、多面體金奈米粒子 (multilateral AuNCs, m-AuNCs) 及立方體氧化亞銅奈米粒子 (cubic Cu2O, c-Cu2O),同時為了進一步提高催化雙氧水的能力,在奈米粒子表面合成奈米鉑微粒,形成以少量鉑合成之核殻式 (core-shell) 奈米金鉑或奈米銅鉑粒子,由掃描式電子顯微鏡 (SEM) 及穿透式電子顯微鏡 (TEM) 觀察奈米粒子的形狀及表面型態,再利用紫外光-可見光光譜 (UV-vis) 及電化學酸處理結果確認鉑還原於奈米金表面,達成核殼式的奈米金鉑結構。最後將合成好之金屬奈米粒子修飾於電極,比較催化雙氧水的能力,其中以核殼式二十四面體金鉑奈米粒子的效果最佳,具有低偵測極限 (10 μM)、線性範圍 (0.01 – 6.0 mM),及靈敏度 (915 μA/mM cm2, R2: 0.99)。本研究第二部分為將雙氧水感測方法應用於膽固醇感測器,由於膽固醇不溶於水,所以必須使用Triton X-100及isopropanol兩種溶劑,研究中發現Triton X-100不僅具有電化學訊號,且會破壞金屬奈米粒子之修飾層,本研究利用具有良好的生物相容性的甲殼素 (chitosan),於pH值約為5.5時成膜的特性製備抗干擾層,將酵素層、保護奈米粒子層及抗干擾層透過電沉積的方法,以單一步驟修飾於電極表面,此方法不僅可以節省電極製備時間、增強機械強度且再現性高,透過最佳化電沉積時間,本研究成功阻擋Triton X-100的干擾,製備具有合適線性範圍(0.25 – 5.0 mM)及靈敏度(1.52 μA/mM cm2, R2: 0.97) 的膽固醇生物感測器。


    The content of cholesterol in human related closely to the cardiovascular diseases that the monitoring of the cholesterol level is of particular importance. The reaction of cholesterol and cholesterol oxidase (ChOx) is a redox reaction which produces hydrogen peroxide (H2O2) can could be quantified by measuring the electrochemical response. The goal of this research is to establish sensing system for the detection of cholesterol with high selectivity and sensitivity, based on amperometric analyses. Previous studies indicated that the catalysts with polyhedral structure provide high index facets and low coordination atoms showing higher activity than the spherical conformation ones. In order to promote the electrochemical responses, various nanoparticles were synthesized and added on the prepared electrodes for sensing H2O2 and cholesterol.
    This study is comprised of two parts: the first part focused on the synthesis of metallic nanoparticles with polyhedral structure. Three types of nanoparticles were synthesized: trioctahedral AuNCs (24-AuNCs), multilateral AuNCs (m-AuNCs), and cubic Cu2O (c-Cu2O). Various analytical methods were employed to verify the physico-chemical and morphology characteristics of the prepared nanoparticles. Moreover, in order to further enhance the catalytic ability for sensing, the metallic nanoparticles with an platinum outer layer was prepared which provides a particular advantage of only utilizing a small amount of platinum and the nanoparticles are termed as core-shelled nanoparticles. The catalytic ability for the different metallic nanoparticles was firstly compared by the sensitivity of sensing H2O2. The results showed that 24-Au@Pt-NCs exhibited the highest sensitivity of 915μA/mMcm2, with a linear range for detecting H2O2 from 0.01 to 6.0 mM (R2: 0.997), and a detection limit of 10μM.
    For the second part, the prepared nanoparticles and electrodes were applied for the detection of cholesterol where Triton X-100 and isopropanol were added to increase the solubility of cholesterol. Because the addition of Triton X-100 caused significant interference and the decomposition of nanoparticles, a protection layer on the top of the electrode, applying electroplating to incorporate chitosan and enzymes in a single step procedure, was further added. The combination of the protection layer with nanoparticles showed good mechanical strength for resisting the detachment of enzymes and nanoparticles as well as effectiveness in sample preparation. The resultant cholesterol sensor resists well from the interference of Triton X-100 by the optimized electroplating time and shows suitable linear range of 0.25 - 5.0 mM with a sensitivity of 1.52 μA/mM cm2 (R2: 0.97).

    中文摘要 I Abstract III 目錄 V 誌謝 V 圖索引 XI 表索引 XV 第一章、緒論 1 1-1、前言 1 1-2、膽固醇簡介 2 1-3、膽固醇生物感測器之發展史 3 1-4、電化學生物感測器發展史 5 1-5、研究動機 7 第二章、文獻回顧 9 2-1、感測器簡介 9 2-2、生物感測器簡介 10 2-2.1、生物感測器定義 10 2-2.2、生物感測器之基本結構與原理 10 2-2.3、生物感測器分類 15 2-3、電化學式生物感測器 17 2-3.1、電流式 (amperometric) 生物感測器 18 2-3.2、電位式 (potentiometric) 生物感測器 19 2-3.3、導電式 (conductometric) 生物感測器 20 2-4、奈米金屬材料 21 2-4.1、奈米材料之簡介 21 2-4.1、金屬奈米材料之特性 22 2-4.3、奈米材料之製備 24 2-4.4、合金型複合奈米粒子 27 2-4.5、雙元金屬之製備 28 2-4.6、奈米金屬於生物感測器應用之文獻回顧 29 2-5、酵素 32 2-5.1、酵素簡介 32 2-5.2、酵素分類 33 2-6、生物辨識元件固定化技術 33 2-6.1、共價鍵結法 (covalent coupling) 34 2-6.2、包埋法 (entrapment) 34 2-6.3、吸附法 (adsorption) 34 2-6.4、交聯法 (cross-linking) 35 2-7、膽固醇檢測之文獻回顧 36 2-7.1、化學顯色法 36 2-7.2、酵素法 37 2-7.3、金屬奈米粒子應用於電化學酵素型膽固醇感測器 39 第三章、實驗方法與儀器原理 43 3-1、實驗設備 43 3-2、實驗藥品與樣品配置 44 3-2.1、實驗藥品 44 3-2.2、藥品配製 45 3-3、實驗方法與步驟 48 3-3.1、二十四面體金奈米粒子之合成方法 48 3-3.2、立方體氧化亞銅奈米粒子之合成方法 49 3-3.3、核殼式奈米金-鉑及奈米銅-鉑粒子之合成 50 3-3.4、修飾金屬奈米粒子於玻璃碳電極 50 3-3.5、膽固醇氧化酶修飾於金屬奈米粒子電極 50 3-3.6、實驗架構 52 3-4、分析儀器與方法 53 3-4.1、掃描式電子顯微鏡分析 53 3-4.2、穿透式電子顯微鏡分析 53 3-4.3、X光繞射分析 53 3-4.4、紫外線/可見光分光光譜儀 (UV-vis) 54 3-5、電化學分析原理 55 3-5.1、電極反應 55 3-5.2、旋轉電極法 56 3-5.3、電化學分析裝置 58 3-5.4、循環伏安法 (cyclic voltammetric method) 59 3-5.5、計時安培法 (amperometric method) 61 第四章、結果與討論 62 4-1、奈米金屬粒子之結構分析 62 4-1.1、奈米金屬表面形態分析 (SEM、TEM) 63 4-1.2、奈米金屬粒子晶體結構分析 (XRD) 73 4-1.3、核殼式奈米金鉑粒子覆蓋程度分析 (UV-vis) 74 4-1.4、奈米粒子之穩定性及活性表面積 75 4-2、金屬奈米粒子修飾電極應用於感測雙氧水 85 4-2.1、以循環伏安法測定雙氧水 85 4-2.2、以計時安培法測雙氧水 90 4-3、雙氧水感測器應用於膽固醇感測器 98 4-3.1、循環伏安法評估金屬奈米粒子修飾於電極表面之穩定性 98 4-3.2、多功能複合膜修飾於電極上之應用 101 4-3.3、多功能複合膜表面型態分析 106 4-3.4、定電位法測定膽固醇 107 第五章、結論與未來展望 113 第六章、參考文獻 116 附錄一 124 附錄二 126

    1. 台灣行政院衛生署, 民國101年主要死因分析. 2013: p. 1-22.
    2. 蕭明熙, 無所不在的膽固醇. 科學發展, 2006. 400: p. 42-47.
    3. M. Wang and M.R. Briggs, HDL: the metabolism, function, and therapeutic importance. Chemical reviews, 2004. 104(1): p. 119-137.
    4. K. Pyorala, T.R. Pedersen, J. kjekshus, O. Faergeman, A.G. Olsson, and G. Thorgeirsson, Cholesterol Lowering With Simvastatin Improves Prognosis of Diabetic Patients With Coronary Heart Disease. Diabetes Care, 1997. 20(4): p. 614-620.
    5. 鍾美蓮, 膽固醇薄膜分子模板複合膜之研究. 朝陽科技大學應用化學系碩士論文, 2004.
    6. R.W. Burke, B.I. Diamonstone, R.A. Velapoldi, and O. menis, Mechanisms of the Liebermann-Burchard and Zak Color Reactions for Cholesterol. Clinical Chemistry, 1974: p. 794-801.
    7. P. Trinder, Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of Clinical Pathology, 1969. 22(2): p. 158-161.
    8. P. Trinder, Simple turbidimetric method for the determination of serum cholesterol. Ann. Clin. Biochem, 1969. 6: p. 165.
    9. H. Fromm, P. Amin, H. Klein, and I. Kupke, Use of a simple enzymatic assay for cholesterol analysis in human bile. Journal of Lipid Research, 1980. 21: p. 259-261.
    10. A. Noma and K. Nakayama, Polarographic method for rapid microdetermination of cholesterol with cholesterol esterase and cholesterol oxidase. Clinical Chemistry, 1976. 22(3): p. 336-340.
    11. S.V. Dzyadevych, V.N. Arkhypova, A.P. Soldatkin, A.V. El'skaya, C. Martelet, and N. Jaffrezic-Renault, Amperometric enzyme biosensors: Past, present and future. ITBM-RBM, 2008. 29(2-3): p. 171-180.
    12. L.C. Clark Jr and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962. 102: p. 29-45.
    13. A. Chaubey and B.D. Malhotra, Mediated biosensors. Biosensors and Bioelectronics, 2002. 17(6-7): p. 441-456.
    14. G.G. Guilbault and G.J. Lubrano, An enzyme electrode for the amperometric determination of glucose. Analytica Chimica Acta, 1973. 64(3): p. 439-455.
    15. D. Leech, P. Kavanagh, and W. Schuhmann, Enzymatic fuel cells: Recent progress. Electrochimica Acta, 2012. 84: p. 223-224.
    16. B. Zheng, S. Xie, L. Qian, H. Yuan, D. Xiao, and M.M.F. Choi, Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor. Sensors and Actuators, B: Chemical, 2011. 152(1): p. 49-55.
    17. X. Chu, D. Duan, G. Shen, and R. Yu, Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta, 2007. 71(5): p. 2040-2047.
    18. W.J. Zhang, L. Bai, L.M. Lu, and Z. Chen, A novel and simple approach for synthesis of palladium nanoparticles on carbon nanotubes for sensitive hydrogen peroxide detection. Colloids and Surfaces B: Biointerfaces, 2012. 97: p. 145-149.
    19. 翟祐暄, 以二十四面奈米金屬觸媒修飾製備電流式雙氧水感測器與其應用. 國立台灣科技大學化工所碩士論文, 2012.
    20. 黃炳照,莊睦賢, 電化學感測器. 化工技術, 1999: p. 第七卷(第二期).
    21. 蘇宏碁, 化學生物感測器講義. 2008, 東華大學化學系. p. 1-44.
    22. J. Castillo, S. Gaspar, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S.A. Dorneanu, A.D. Ryabov, and E. Csoregi, Biosensors for life quality - Design, development and applications. Sensors and Actuators, B: Chemical, 2004. 102(2): p. 179-194.
    23. S.P. Mohanty and E. Koucianos, Biosensors: A tutorial review. IEEE Potentials, 2006. 25(2): p. 35-40.
    24. L.R. Lin, Z.G. Fu, B. Dan, G.J. Jing, M.L. Tong, D.T. Chen, Y. Yu, C.G. Zhang, T.C. Yang, and Z.Y. Zhang, Development of a colloidal gold-immunochromatography assay to detect immunoglobulin G antibodies to Treponema pallidum with TPN17 and TPN47. Diagnostic Microbiology Infectious Disease, 2010. 68(3): p. 193-200.
    25. 吳宗正,羅淵仁,劉世隆,林于生, 電子鼻感測元件分子識別材料之探索研. Chemistry, 2001. 59(2): p. 235-243.
    26. 袁秋英,林志鍵,蔣慕琰, 生物感測器檢測環境污染物之研發與應用. 行政院農業委員會, 2009: p. 83-87.
    27. 袁秋英, 細胞感測器於環境污染物毒性檢測之研發與應用. 農業生技產業季刊, 2009. No.20: p. 61-66.
    28. J.I.R.D. Corcuera and R.P. Cavalieri, Biosensors. Marcel Dekker, Inc, 2003: p. 119-123.
    29. 許峰碩, 奈米碳黑在免疫層析檢測上的應用. 國立中興大學化學工程研究所碩士論文, 2002.
    30. 陳冠榮, 以奈米金修飾電極製備電流式免疫型感測器. 國立台灣科技大學化學工程研究所碩士論文, 2008.
    31. 謝振傑, 光纖生物感測器. 物理雙月刊, 2006. 廿八卷四期: p. 704-710.
    32. 陳春吉, 自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用. 國立成功大學醫學工程研究所碩士論文, 2002.
    33. E. Bakker and Y. Qin, Electrochemical sensors. Analytical Chemistry, 2006. 78(12): p. 3965-3983.
    34. 汪玉銘, 定電流聚合導電性高分子法製備葡萄糖生物感測器之研究. 國立成功大學化學工程學系碩士論文, 2003.
    35. F. Yalcinkaya and E.T. Powner, Intelligent structures. Sensor Review, 1996. 16(2): p. 32-37.
    36. P. D'Orazio, Biosensors in clinical chemistry. Clinica Chimica Acta, 2003. 334(1-2): p. 41-69.
    37. M.Z. Atashbar, S. Krishnamurthy, and G. Korotcenkov, Chemical Sensors Volume 1: Fundamentals of Sensing Material: General Approaches, G. Korotcenkov, Editor. 2010. p. 3-6.
    38. D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, Electrochemical biosensors - Sensor principles and architectures. Sensors, 2008. 8(3): p. 1400-1458.
    39. 生醫奈米科技教學資源中心, 生醫奈米技術. 教育部「生物及醫學科技人才培育先導型計畫」, 2007: p. 3-15.
    40. B.R. Cuenya, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films, 2010. 518(12): p. 3127-3150.
    41. B. Hvolbak, T.V.W. Janssens, B.S. Clausen, H. Falsig, C.H. Christensen, and J.K. Norskov, Catalytic activity of Au nanoparticles. Nano Today, 2007. 2(4): p. 14-18.
    42. M. Haruta, Nanoparticulate gold catalysts for low-temperature CO oxidation. Journal of New Materials for Electrochemical Systems, 2004. 7(3 SPEC. ISS.): p. 163-172.
    43. N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, and L.W. Zhong, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007. 316(5825): p. 732-735.
    44. Y. Kim, J.W. Hong, Y.W. Lee, M. Kim, D. Kim, W.S. Yun, and S.W. Han, Synthesis of AuPt heteronanostructures with enhanced electrocatalytic activity toward oxygen reduction. Angewandte Chemie - International Edition, 2010. 49(52): p. 10197-10201.
    45. F. Yang, M.S. Chen, and D.W. Goodman, Sintering of Au particles supported on TiO2(110) during CO oxidation. Journal of Physical Chemistry C, 2009. 113(1): p. 254-260.
    46. A. Kolmakov and D.W. Goodman, Scanning tunneling microscopy of gold clusters on TiO2(110): CO oxidation at elevated pressures. Surface Science, 2001. 490(1-2): p. L597-L601.
    47. X. Lai and D.W. Goodman, Structure-reactivity correlations for oxide-supported metal catalysts: New perspectives from STM. Journal of Molecular Catalysis A: Chemical, 2000. 162(1-2): p. 33-50.
    48. T. Frelink, W. Visscher, and J.A.R.v. Veen, Particle size effect of carbon-supported platinum catalysts. Electroanalytical Chemistry, 1995. 382: p. 65-72.
    49. 董慕愷,陳郁文, 奈米金觸媒. 科學發展, 2005. 390期: p. 46-49.
    50. M. Comotti, W.-C. Li, B. Spliethoff, and F. Schuth, Support Effect in High Activity Gold Catalysts for CO Oxidation. Journal of the American Chemical Society, 2006. 128: p. 917-924.
    51. D. Chen and H.Y. Liu, One-step synthesis of nickel ferrite nanoparticles by ultrasonic wave-assisted ball milling technology. Materials Letters, 2012. 72: p. 95-97.
    52. X. Zhang and K.Y. Chan, Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chemistry of Materials, 2003. 15(2): p. 451-459.
    53. S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C.M. Cobley, and Y. Xia, Gold nanocages: Synthesis, properties, and applications. Accounts of Chemical Research, 2008. 41(12): p. 1587-1595.
    54. 裘性天,黃亭凱, 特殊形貌銅與銀奈米材料製備之簡介. Chemistry, 2007. 65(1): p. 9-16.
    55. 邱信凱, 鎳金合金奈米粒子之製備與特性研究. 國立成功大學化學工程學系碩士論文, 2005.
    56. 張澔洧,張文翔,游竣翔,劉鎮維, 奈米級鉑材料的合成及應用. Chemistry, 2007. 65(1): p. 27-33.
    57. M.P. Pileni, B.W. Ninham, T. Gulik-Krzywicki, J. Tanori, I. Lisiecki, and A. Filankembo, Direct Relationship Between Shape and Size of Template and Synthesis of Copper Metal Particles. Advanced Materials, 1999. 11(16): p. 1358-1362.
    58. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, and N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science, 2007. 315(5811): p. 493-497.
    59. 陳東煌, 複合奈米粒子. 化工資訊與商情, 2003. 408期: p. 40-45.
    60. W. Liu, E. Repo, M. Heikkila, M. Leskela, and M. Sillanpaa, Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template. Nanotechnology, 2010. 21(39): p. 1-10.
    61. L.E. Murillo, A.M. Goda, and J.G. Chen, Selective hydrogenation of the C=O bond in acrolein through the architecture of bimetallic surface structures. Journal of the American Chemical Society, 2007. 129(22): p. 7101-7105.
    62. S. Guo, S. Dong, and E. Wang, Raspberry-like hierarchical Au/Pt nanoparticle assembling hollow spheres with nanochannels: An advanced nanoelectrocatalyst for the oxygen reduction reaction. Journal of Physical Chemistry C, 2009. 113(14): p. 5485-5492.
    63. N.F. Atta and M.F. El-Kady, Novel poly(3-methylthiophene)/Pd, Pt nanoparticle sensor: Synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids. Sensors and Actuators B: Chemical, 2010. 145(1): p. 299-310.
    64. Z. Wang, F. Ai, Q. Xu, Q. Yang, J.-H. Yu, W.-H. Huang, and Y.-D. Zhao, Electrocatalytic activity of salicylic acid on the platinum nanoparticles modified electrode by electrochemical deposition. Colloids and Surfaces B: Biointerfaces, 2010. 76(1): p. 370-374.
    65. V. Salgueirino-Maceira and M.A. Correa-Duarte, Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications. Advanced Materials, 2007. 19(23): p. 4131-4144.
    66. Y. Li, J.-J. Zhang, J. Xuan, L.-P. Jiang, and J.-J. Zhu, Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochemistry Communications, 2010. 12(6): p. 777-780.
    67. S. Guo, Y. Fang, S. Dong, and E. Wang, High-Efficiency and Low-Cost Hybrid Nanomaterial as Enhancing Electrocatalyst:Spongelike Au/Pt Core/Shell Nanomaterial with Hollow Cavity. J. Phys. Chem. C, 2007. 111: p. 17104-17109.
    68. H. Fan, Z.-Q. Pan, and H.-Y. Gu, The self-assembly, characterization and application of hemoglobin immobilized on Fe3O4@Pt core-shell nanoparticles. Microchimica Acta, 2010. 168(3-4): p. 239-244.
    69. S. Liu, L. Wang, and F. Zhao, Influence of gold nanoparticle modified electrode on the mediation reduction of ferricyanide by methylene blue. Journal of Electroanalytical Chemistry, 2007. 602(1): p. 55-60.
    70. L. Bahshi, M. Frasconi, R. Tel-Vered, O. Yehezkeli, and I. Willner, Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme-Pt nanoparticles composite electrodes. Analytical Chemistry, 2008. 80(21): p. 8253-8259.
    71. M. Zayats, E. Katz, R. Baron, and I. Willner, Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted biocatalyst. Journal of the American Chemical Society, 2005. 127(35): p. 12400-12406.
    72. O. Yehezkeli, R. Tel-Vered, S. Raichlin, and I. Willner, Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano, 2011. 5(3): p. 2385-2391.
    73. Y. Ma, Q. Kuang, Z. Jiang, Z. Xie, R. Huang, and L. Zheng, Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angewandte Chemie - International Edition, 2008. 47(46): p. 8901-8904.
    74. 行政院國家科技委員會, 生化反應的催化劑──酵素. 2003: p. 1.
    75. 林哲瑩, 高敏度表面分析與高解析技術對診斷具疾病表現之單一核苷酸多型性效能之研究. 國立成功大學材料科學及工程學系碩士論文, 2005.
    76. 葉旻鑫, 均勻結構之複合式鉑銥奈米金屬觸媒/葡萄糖氧化酵素電極及其製備與應用. 國立臺灣科技大學化學工程系碩士論文, 2008.
    77. B.M. Brena and F. Batista-Viera, Methods in Biotechnology: Immobilization of Enzymes and Cells, J.M. Guisan, Editor. 2006, Humana Press Inc. p. 15-30.
    78. S. Gamati, J.H.T. Luong, and A. Mulchandani, A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosensors and Bioelectronics, 1991. 6(2): p. 125-131.
    79. A.A. Ensafi and A. Kazemzadeh, Optical pH sensor based on chemical modification of polymer film. Microchemical Journal, 1999. 63(3): p. 381-388.
    80. Z. Zhujun and W.R. Seitz, Optical sensor for oxygen based on immobilized hemoglobin. Analytical Chemistry, 1986. 58(1): p. 220-222.
    81. B.D. Ratner, biomaterials science an introduction to materials in medicine academic press. 1996: p. 124-30.
    82. D.L. Shen J, Liu CC., An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B-Chemical, 2007. 125(106-13).
    83. 林孟山, 光電化學脂質生化感測器. 行政院國家科學委員會專題研究計畫, 2005.
    84. B. Zak, Cholesterol Methodologies: A Review. Clinical chemistry, 1977. 23(7): p. 1201-1214.
    85. W. Bloor, K. Pelkan, and D. Allen, Determination of fatty acids (and cholesterol) in small amounts of blood plasma. Journal of Biological Chemistry, 1922. 52(1): p. 191-205.
    86. L.L. Abell, B.B. Levy, B.B. Brodie, and F.E. Kendall, A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. Journal of Biological Chemistry, 1952. 195(1): p. 357-366.
    87. P. Gomathi, D. Ragupathy, J.H. Choi, J.H. Yeum, S.C. Lee, J.C. Kim, S.H. Lee, and H.D. Ghim, Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensors and Actuators B: Chemical, 2011. 153(1): p. 44-49.
    88. U. Saxena, M. Chakraborty, and P. Goswami, Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples. Biosens Bioelectron, 2011. 26(6): p. 3037-3043.
    89. Y.-C. Tsai, S.-Y. Chen, and C.-A. Lee, Amperometric cholesterol biosensors based on carbon nanotube–chitosan–platinum–cholesterol oxidase nanobiocomposite. Sensors and Actuators B: Chemical, 2008. 135(1): p. 96-101.
    90. C. Wang, X. Tan, S. Chen, R. Yuan, F. Hu, D. Yuan, and Y. Xiang, Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods. Talanta, 2012. 94: p. 263-270.
    91. A. Safavi and F. Farjami, Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens and Bioelectronics, 2011. 26(5): p. 2547-2552.
    92. R.S. Dey and C.R. Raj, Development of an Amperometric Cholesterol Biosensor Based on Graphene-Pt Nanoparticle Hybrid Material. The Journal of Physical Chemistry C, 2010. 114: p. 21427-21433.
    93. M. Ahmad, C. Pan, L. Gan, Z. Nawaz, and J. Zhu, Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-like ZnO Nanospheres. The Journal of Physical Chemistry C, 2010. 114: p. 243-250.
    94. A.I. Gopalan, K.P. Lee, and D. Ragupathy, Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network. Biosens Bioelectron, 2009. 24(7): p. 2211-2217.
    95. S.P.a.S.P. Moulik, Cholesterol solubility in mixed micellar solutions of ionic and non-ionic surfactants. Journal of Lipid Research, 1983. 24: p. 1281-1290.
    96. L. Gou and C.J. Murphy, Solution-Phase Synthesis of Cu2O Nanocubes. Nano Letters, 2003. 3(2): p. 231-234.
    97. 楊曉菁, 硫氧化物及聚賽吩衍生物在金、鉑電極上之研究. 國立中央大學化學研究所碩士論文, 2003.
    98. 胡啟章, 電化學原理與方法. 五南圖書出版公司, 2002: p. 90-96.
    99. 彭文權, 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒. 元智大學化學工程學系碩士論文, 1997.
    100. A.J. Bard and L.R. Faulkner, Electrochemical Methods Fundamentals and Applications. 2001, John Wiley & Sons, INC. p. 225-227.
    101. H. Zhang, C. Shen, S. Chen, Z. Xu, F. Liu, J. Li, and H. Gao, Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology, 2005. 16(2): p. 267-272.
    102. N.R. Jana, L.A. Gearheart, S.O. Obare, C.J. Johnson, K.J. Edler, S. Mann, and C.J. Murphy, Liquid crystalline assemblies of ordered gold nanorods. Journal of Materials Chemistry, 2002. 12(10): p. 2909-2912.
    103. 邱國斌,蔡定平, 金屬表面電漿簡介. 物理雙月刊, 2006. 28: p. 472-485.
    104. 曾賢德, 金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作. 物理專文, 2010. 32: p. 126-135.
    105. B.S. Instrument, Calculation of the platinum's active surface. 2010. p. 1-3.
    106. T. Biegler, D.A.J. Rand, and R. Woods, Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. Journal of Electroanalytical Chemistry, 1971. 29(2): p. 269-277.
    107. S.B. Brummer, The use of large anodic galvanostatic transients to evaluate the maximum adsorption on platinum from formic acid solutions. Journal of Physical Chemistry, 1965. 69(2): p. 562-571.
    108. S.-H. Lee, H.-Y. Fang, and W.-C. Chen, Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate–chitosan oligomers mixture. Sensors and Actuators B: Chemical, 2006. 117(1): p. 236-243.
    109. L.-Q. Wu, A.P. Gadre, H. Yi, M.J. Kastantin, G.W. Rubloff, W.E. Bentley, G.F. Payne, and R. Ghodssi, voltage-Dependent Assembly of the Polysaccharide Chitosan onto an Electrode Surface. Langmuir, 2002: p. 8620-8625.

    無法下載圖示 全文公開日期 2018/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE