簡易檢索 / 詳目顯示

研究生: Brianti Satrianti Utami
Brianti - Satrianti Utami
論文名稱: A Comprehensive Study Of (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 Lead Free Piezoceramic and Its Electric Field Induced Large Strain- Dependent Composition
A Comprehensive Study Of (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 Lead Free Piezoceramic and Its Electric Field Induced Large Strain- Dependent Composition
指導教授: 周振嘉
Chen-chia Chou
口試委員: 施劭儒
Shao-ju Shih
陳宜君
Yi-Chun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 116
外文關鍵詞: Intermediate Phase
相關次數: 點閱:322下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


In this report, the comprehensive study of BNBxT piezoceramics is reported. (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 (abbreviated as BNBxT with x=0, x=0.03-0.12) piezoceramics had been successfully fabricated by oxide mixing route. The phase identification revealed that the ceramics with x=0-0.05 are having rhombohedral symmetry in the perovskite structure. For x=0.06-0.09 and x=0.10-0.12, the transition phase to tetragonal symmetry and tetragonal phase are identified, respectively. The electrical properties measurement revealed that the optimum properties is achieved by x=0.06-0.09. The giant strain was occurred during the piezoelectric measurement of BNB7T specimen in which achieved 0.32%. The giant strain is believed to be attributed from the coexistence of R3c symmetry and P4bm symmetry that construct the nano scale polarization. Once this nano scale polarization is induced by electric field, the nano size domain would be aligned along the direction of the field and this would exhibit the giant strain.
The existence of mixed symmetry of R3c and P4bm is supported by the TEM image. Within x composition, the evolution of domain morphologies. The tweed like structure was observed almost in all grain of BNB3T-BNB9T. But tweed structure in BNB3T-BNB5T is much more complex. The long range domain and the nano size domain coexisted in one grain. In the other hand, BNB6T-BNB9T show more nano size domains. At BNB10T-BNB12T, the long range domains become obvious with the disappearance of nano size domains.
Finally, the new built phase diagram is successfully interpreted from microstructural investigation through TEM, combined with the electrical properties measurement.

ABSTRACT i Acknowledgements iii Table of Contents iv List of Figures vi List Of Tables x CHAPTER I INTRODUCTION 1 I. 1. BACKGROUND 1 I. 2. FUNDAMENTAL THEORY 4 I. 2. 1. DIELECTRICS 4 I. 2. 2. FERROELECTRICITY 6 I. 2. 3. ELECTROSTRICTION AND PIEZOELECTRICITY 9 I. 3. LITERATURE REVIEW 10 I. 4. PROBLEMS 19 I. 5. OBJECTIVES 20 CHAPTER II EXPERIMENTAL PROCEDURE 22 II. 1. RAW MATERIAL 24 II. 2. EXPERIMENTAL FLOWCHART 24 II. 3. CRYSTAL STRUCTURE BY X-RAY DIFFRACTION 26 II. 4. DENSITY MEASUREMENT 26 II. 5. SCANNING ELECTRON MICROSCOPY (SEM) 26 II. 6. TRANSMISSION ELECTRON MICROSCOPY (TEM) 27 II. 7. DIELECTRIC PROPERTIES MEASUREMENT 27 II. 8. ELECTROMECHANICAL MEASUREMENT 27 II. 9. FERROELECTRIC PROPERTIES (POLARIZATION VS ELECTRIC FIELD) 28 II. 10. PIEZOELECTRIC PROPERTIES (STRAIN VS ELECTRIC FIELD; D33) 29 II. 11. MECHANICAL PROPERTIES 30 CHAPTER III PHASE IDENTIFICATION AND MICROSTRUCTURAL INVESTIGATION 31 III. 1. TOLERANCE FACTOR 31 III. 2. X-RAY DIFFRACTION ANALYSIS 32 III. 3. MICROSTRUCTURAL INVESTIGATION BY SEM 38 CHAPTER IV ELECTRICAL PROPERTIES 43 IV. 1. DIELECTRIC PROPERTIES 43 IV. 2. FERROELECTRIC PROPERTIES 54 IV. 3. PIEZOELECTRIC PROPERTIES 61 IV. 3. 1. FIELD INDUCED STRAIN MEASUREMENT 61 IV. 3. 2. PIEZOELECTRIC CONSTANT (d33) MEASUREMENT 66 IV. 4. ELECTROMECHANICAL PROPERTIES 67 CHAPTER V MECHANICAL PROPERTIES 73 CHAPTER VI RELAXOR PHENOMENA 77 CHAPTER VII MICROSTRUCTURAL ANALYSIS 80 VII. 1. THE TEM INVESTIGATION ON BNB3T 80 VII. 2. THE TEM INVESTIGATION ON BNB6T 84 VII. 3. THE TEM INVESTIGATION ON BNB9T 87 VII. 4. THE TEM INVESTIGATION ON BNB12T 89 CHAPTER VIII A NEW BUILT PHASE DIAGRAM 91 CHAPTER IX SUMMARY 93 References xi Appendixes xviii

[1] A. J. Moulson and J. M. Herbert, Electroceramics : materials, properties, applications, 2nd ed. West Sussex ; New York: Wiley, 2003.
[2] B. Jaffe, Cook, W.R., Jaffe, H., Piezoelectric Ceramics, 1971.
[3] F. Levassort, P. Tran-Huu-Hue, E. Ringaard, and M. Lethiecq, "High-frequency and high-temperature electromechanical performances of new PZT-PNN piezoceramics," Journal of the European Ceramic Society, vol. 21, pp. 1361-1365, 2001.
[4] G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, "New ferroelectrics of complex composition. IV," Sov. Phys. Solid State, vol. 2, pp. 2651-2654, 1961.
[5] T. Takenaka, K.-i. Maruyama, and K. Sakata, "(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 30, pp. 2236-2239, 1991.
[6] D. Lin, D. Xiao, J. Zhu, and P. Yu, "Piezoelectric and ferroelectric properties of [Bi 0.5 (Na 1-x-yK xLi y) 0.5] TiO 3 lead-free piezoelectric ceramics," Applied Physics Letters, vol. 88, 2006.
[7] N. Ichinose and K. Udagawa, "Piezoelectric properties of (Bi1/2Na1/2)TiO3 based ceramics," Ferroelectrics, vol. 169, pp. 317-325, 1995.
[8] T. Takenaka, T. Okuda, and K. Takegahara, "Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3," Ferroelectrics, vol. 196, pp. 175-178, 1997.
[9] A. Herabut and A. Safari, "Processing and electromechanical properties of (Bi0.5Na0.5)(1-1.5x)LaxTiO 3 ceramics," Journal of the American Ceramic Society, vol. 80, pp. 2954-2958, 1997.
[10] T. Takenaka, "Piezoelectric properties of some lead-free ferroelectric ceramics," Ferroelectrics, vol. 230, pp. 389/87-400/98, 1999.
[11] B. Chu, G. Li, X. Jiang, and D. Chen, "Piezoelectric property and relaxation phase transition of Na1/2Bi1/2TiO3 system," Wuji Cailiao Xuebao/Journal of Inorganic Materials, vol. 15, pp. 815-821, 2000.
[12] Y. Wu, H. Zhang, Y. Zhang, J. Ma, and D. Xie, "Lead-free piezoelectric ceramics with composition of (0.97-x)Na1/2Bi1/2TiO30.03NaNbO3-xBa TiO3," Journal of Materials Science, vol. 38, pp. 987-994, 2003.
[13] B.-J. Chu, D.-R. Chen, G.-R. Li, and Q.-R. Yin, "Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics," Journal of the European Ceramic Society, vol. 22, pp. 2115-2121, 2002.
[14] A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, "Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K 0.5)TiO3 systems," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 38, pp. 5564-5567, 1999.
[15] X. Wang, H. L. W. Chan, and C. L. Choy, "Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics," Solid State Communications, vol. 125, pp. 395-399, 2003.
[16] Y. Hiruma, H. Nagata, and T. Takenaka, "Phase transition temperatures and piezoelectric properties of (Bi 1/2Na1/2)TiO3-(Bi1/2K 1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 45, pp. 7409-7412, 2006.
[17] T. Takenaka and H. Nagata, "Current status and prospects of lead-free piezoelectric ceramics," Journal of the European Ceramic Society, vol. 25, pp. 2693-2700, 2005.
[18] Y. Watanabe, Y. Hiruma, H. Nagata, and T. Takenaka, "Phase transition temperatures and electrical properties of divalent ions (Ca2+, Sr2+ and Ba2+) substituted (Bi1/2Na1/2)TiO3 ceramics," Ceramics International, vol. 34, pp. 761-764, 2008.
[19] K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, "Electrical properties and depolarization temperature of (Bi 1/2Na1/2)TiO3-(Bi1/2K 1/2)TiO3 lead-free piezoelectric ceramics," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 45, pp. 4493-4496, 2006.
[20] S. T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. J. Kleebe, and J. Rodel, "Lead-free piezoceramics with giant strain in the system Bi 0.5Na0.5TiO3-BaTiO3 - K 0.5Na0.5NbO3. I. Structure and room temperature properties," Journal of Applied Physics, vol. 103, 2008.
[21] Y. Li, W. Chen, Q. Xu, J. Zhou, and X. Gu, "Piezoelectric and ferroelectric properties of Na0.5Bi 0.5TiO3-K0.5Bi0.5TiO 3-BaTiO3 piezoelectric ceramics," Materials Letters, vol. 59, pp. 1361-1364, 2005.
[22] Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, and R. Xu, "Dielectric and piezoelecrtic properties of lead-free (Na 0.5Bi0.5)TiO3-NaNbO3 ceramics," Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 112, pp. 5-9, 2004.
[23] D. Lin, D. Xiao, J. Zhu, and P. Yu, "Electrical properties of [Bi 1-z(Na 1-x-y-zK xLi y)] 0.5Ba zTio 3 multi-component lead-free piezoelectric ceramics," Physica Status Solidi (A) Applications and Materials Science, vol. 202, pp. R89-R91, 2005.
[24] C. Peng, J. F. Li, and W. Gong, "Preparation and properties of (Bi1/2Na1/2)TiO 3-Ba(Ti,Zr)O3 lead-free piezoelectric ceramics," Materials Letters, vol. 59, pp. 1576-1580, 2005.
[25] K. Sakata, T. Takenaka, and Y. Naitou, "Phase relations, dielectric and piezoelectric properties of ceramics in the system NaBiTiO-PbTiO0.5 0.5 3 3," Ferroelectrics, vol. 131, pp. 219-226, 1992.
[26] C. Zhou and X. Liu, "Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of Bi1/2Na1/2TiO 3-Bi(Mg2/3Nb1/3)O3," Journal of Materials Science, vol. 43, pp. 1016-1019, 2008.
[27] C. Zhou and X. Liu, "Dielectric and piezoelectric properties of Bi0.5 Na0.5TiO3-BaNb2O6 lead-free piezoelectric ceramics," Journal of Materials Science: Materials in Electronics, vol. 19, pp. 29-32, 2008.
[28] Y. M. Chiang, G. W. Farrey, and A. N. Soukhojak, "Lead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family," Applied Physics Letters, vol. 73, pp. 3683-3685, 1998.
[29] O. Elkechai, P. Marchet, P. Thomas, M. Manier, and J. P. Mercurio, "Structural and dielectric study of the Na0.5Bi0.5TiO3-PbTiO3 and K0.5Bi0.5TiO3-PbTiO3 systems," Journal of Materials Chemistry, vol. 7, pp. 91-97, 1997.
[30] K. S. Hong and S. E. Park, "Phase relations in the system of (Na1/2Bi1/2)TiO3-PbTiO3. II. Dielectric property," Journal of Applied Physics, vol. 79, pp. 388-392, 1996.
[31] Y. Hosono, K. Harada, and Y. Yamashita, "Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3-BaTiO3," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 40, pp. 5722-5726, 2001.
[32] H. Ishii, H. Nagata, and T. Takenaka, "Morphotropic phase boundary and electrical properties of bisumuth sodium titanate - Potassium niobate solid-solution ceramics," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 40, pp. 5660-5663, 2001.
[33] S. E. Park and K. S. Hong, "Phase relations in the system of (Na1/2Bi1/2)TiO3-PbTiO3. I. Structure," Journal of Applied Physics, vol. 79, pp. 383-387, 1996.
[34] S. E. Park and K. S. Hong, "Variations of structure and dielectric properties on substituting A-site cations for Sr2+ in (Na1/2Bi1/2)TiO3," Journal of Materials Research, vol. 12, pp. 2152-2157, 1997.
[35] K. Sakata and Y. Masuda, "FERROELECTRIC AND ANTIFERROELECTRIC PROPERTIES OF (Na//0//. //5Bi//0//. //5)TiO//3-SrTiO//3 SOLID SOLUTION CERAMICS," Ferroelectrics, vol. 7, pp. 347-349, 1974.
[36] T. Wada, K. Toyoike, Y. Imanaka, and Y. Matsuo, "Dielectric and piezoelectric properties of (A0.5Bi0.5)TiO3-ANbO3 (A = Na, K) systems," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 40, pp. 5703-5705, 2001.
[37] D. Lin, K. W. Kwok, and H. W. L. Chan, "Structure and electrical properties of (Bi 0.5Na 0.5) 1-x-y-z Ba xSr yCa zTiO 3 lead-free piezoelectric ceramics," Journal of Physics D: Applied Physics, vol. 40, pp. 5344-5350, 2007.
[38] Y. Makiuchi, R. Aoyagi, Y. Hiruma, H. Nagata, and T. Takenaka, "(Bi(1/2)Na(1/2))TiO(3)-(Bi(1/2)K(1/2))TiO(3)-BaTiP(3)-Based lead-free piezoelectric ceramics," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 44, pp. 4350-4353, Jun 2005.
[39] H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, "Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 7401-7403, Dec 2003.
[40] S. A. Sheets, A. N. Soukhojak, N. Ohashi, and Y. M. Chiang, "Relaxor single crystals in the (Bi1/2Na1/2)1 - XBaxZryTi1 - yO3 system exhibiting high electrostrictive strain," Journal of Applied Physics, vol. 90, pp. 5287-5295, 2001.
[41] X. X. Wang, X. G. Tang, and H. L. W. Chan, "Electromechanical and ferroelectric properties of (Bi 1/2Na 1/2)TiO 3-(Bi 1/2K 1/2)TiO 3-BaTiO 3 lead-free piezoelectric ceramics," Applied Physics Letters, vol. 85, pp. 91-93, 2004.
[42] L. Wu, D. Xiao, D. Lin, J. Zhu, P. Yu, and X. Li, "Temperature dependence of electric properties of [Bi0.5(Na 1-xAgx)0.5]1-yBayTiO 3 ceramics," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 46, pp. 7382-7387, 2007.
[43] L. Wu, D. Q. Xiao, D. M. Lin, J. G. Zhu, and P. Yu, "Synthesis and properties of [Bi0.5(Na1-xAg x)0.5]1-yBayTiO3 piezoelectric ceramics," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 44, pp. 8515-8518, 2005.
[44] S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, "Giant strain in lead-free piezoceramics Bi0.5 Na0.5 Ti O3 -BaTi O3 - K0.5 Na0.5 Nb O3 system," Applied Physics Letters, vol. 91, 2007.
[45] Y. R. Zhang, J. F. Li, B. P. Zhang, and C. E. Peng, "Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2 Na1/2) TiO3 - (Bi1/2 K1/2) TiO3 lead-free piezoelectric ceramics," Journal of Applied Physics, vol. 103, 2008.
[46] Y. Hiruma, K. Yoshii, H. Nagata, and T. Takenaka, "Phase transition temperature and electrical properties of (Bi[sub 1/2]Na[sub 1/2])TiO[sub 3]--(Bi[sub 1/2]A[sub 1/2])TiO[sub 3] (A = Li and K) lead-free ferroelectric ceramics," Journal of Applied Physics, vol. 103, pp. 084121-7, 2008.
[47] L. L. H. a. J. K. West, Principles of Electronic Ceramics New York: Wiley, 1990.
[48] D. Viehland, "Effect of Uniaxial Stress Upon the Electromechanical Properties of Various Piezoelectric Ceramics and Single Crystals," Journal of the American Ceramic Society, vol. 89, pp. 775-785, 2006.
[49] R. Ranjan and A. Dviwedi, "Structure and dielectric properties of (Na0.50Bi0.50)1−xBaxTiO3: 0≤x≤0.10," Solid State Communications, vol. 135, pp. 394-399, 2005.
[50] M. H. K. T.K. Song, Y.S. Sung, H.G. Yeo and S.H. Lee, "Depolarization Temperatures in Pb-Free Piezoelectric Materials," Journal of Korean Physical Society, vol. 51, pp. 697-700, 2007.
[51] C. Xu, D. Lin, and K. W. Kwok, "Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics," Solid State Sciences, vol. 10, pp. 934-940, 2008.
[52] D. Rout, K.-S. Moon, V. S. Rao, and S.-J. L. Kang, "Study of the morphotropic phase boundary in the lead-free Na<sub>1/2</sub>Bi<sub>1/2</sub>TiO<sub>3</sub>-BaTiO<sub>3</sub> system by Raman spectroscopy," Journal of the Ceramic Society of Japan, vol. 117, pp. 797-800, 2009.
[53] G. Picht, J. Topfer, and E. Hennig, "Structural properties of (Bi0.5Na0.5)1−xBaxTiO3 lead-free piezoelectric ceramics," Journal of the European Ceramic Society, vol. 30, pp. 3445-3453, 2010.
[54] B. Wylie-van Eerd, D. Damjanovic, N. Klein, N. Setter, and J. Trodahl, "Structural complexity of (Na_{0.5}Bi_{0.5})TiO_{3}-BaTiO_{3} as revealed by Raman spectroscopy," Physical Review B, vol. 82, p. 104112, 2010.
[55] C. Ma, X. Tan, E. Dul'Kin, and M. Roth, "Domain structure-dielectric property relationship in lead-free (1-x) (Bi 1/2 Na 1/2) TiO 3- x BaTiO 3 ceramics," Journal of Applied Physics, vol. 108, 2010.
[56] Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, and T. G. Park, "NotRoles of lattice distortion in (1-x) (Bi0.5Na0.5) TiO3-x BaTiO3 ceramics," Applied Physics Letters, vol. 96, 2010.
[57] S.-T. Zhang, A. B. Kounga, E. Aulbach, and Y. Deng, "Temperature-Dependent Electrical Properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 3950-3954, 2008.
[58] A. B. K. Y.L. Wang, C. Hoffmann, "Large Strain Lead Free Ceramic Materials for Actuators."
[59] X. Ren, "Large Electric-Field-Induced Strain in Ferroelectric Crystals by Point-Defect-Mediated Reversible Domain Switching," Nature Materials vol. 3, pp. 91-94, 2004.
[60] Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, and T. Takenaka, "Large electrostrain near the phase transition temperature of (Bi 0.5Na0.5) TiO3-SrTiO3 ferroelectric ceramics," Applied Physics Letters, vol. 92, 2008.
[61] S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, and S. Mori, "Giant strain in lead-free (Bi0.5 Na0.5) Ti O3 -based single crystals," Applied Physics Letters, vol. 92, 2008.
[62] Y. Hiruma, H. Nagata, and T. Takenaka, "Phase diagrams and electrical properties of (Bi1/2Na 1/2)TiO3-based solid solutions," Journal of Applied Physics, vol. 104, 2008.
[63] W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, "Origin of the large strain response in (K0.5 Na0.5) NbO3 -modified (Bi0.5 Na0.5) TiO3 - BaTiO3 lead-free piezoceramics," Journal of Applied Physics, vol. 105, 2009.
[64] W. Liu and X. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys Rev Lett, vol. 103, p. 257602, 2009.
[65] J. E. Daniels, W. Jo, J. Rodel, and J. L. Jones, "Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93% (Bi0.5Na0.5) TiO 3 -7% BaTiO3 piezoelectric ceramic," Applied Physics Letters, vol. 95, 2009.
[66] Y. Noguchi, S. Teranishi, M. Suzuki, and M. Miyayama, "Electric-field-induced giant strain in Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-based single crystals: Influence of high-oxygen-pressure annealing," Journal of the Ceramic Society of Japan, vol. 117, pp. 32-36, 2009.
[67] A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, "Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics," Sensors and Actuators A: Physical, vol. 158, pp. 84-89, 2010.
[68] Y. Guo, Y. Liu, R. L. Withers, F. Brink, and H. Chen, "Large Electric Field-Induced Strain and Antiferroelectric Behavior in (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 Ceramics," Chemistry of Materials, vol. 23, pp. 219-228, 2011/01/25 2010.
[69] V. Dorcet and G. Trolliard, "A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3," Acta Materialia, vol. 56, pp. 1753-1761, 2008.
[70] C. W. Tai, S. H. Choy, and H. L. W. Chan, "Ferroelectric Domain Morphology Evolution and Octahedral Tilting in Lead-Free (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(Bi1/2Li1/2)TiO3–BaTiO3 Ceramics at Different Temperatures," Journal of the American Ceramic Society, vol. 91, pp. 3335-3341, 2008.
[71] J.-F. Trelcat, C. Courtois, M. Rguiti, A. Leriche, P.-H. Duvigneaud, and T. Segato, "Morphotropic phase boundary in the BNT–BT–BKT system," Ceramics International, vol. 38, pp. 2823-2827, 2012.
[72] C.-S. Chou, R.-Y. Yang, J.-H. Chen, and S.-W. Chou, "The optimum conditions for preparing the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 using the Taguchi method," Powder Technology, vol. 199, pp. 264-271, 2010.
[73] A. S. Bhalla, Guo, R. and Roy, R., "The Perovskite Structure– A Review of its Role in Ceramics Science and Technology," Mater. Res. Innovation, vol. 4, pp. 3-26, 2000.
[74] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica Section A, vol. 32, pp. 751-767, 1976.
[75] W.-C. Lee, C.-Y. Huang, L.-K. Tsao, and Y.-C. Wu, "Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics," Journal of the European Ceramic Society, vol. 29, pp. 1443-1448, 2009.
[76] S. Saı̈d and J.-P. Mercurio, "Relaxor behaviour of low lead and lead free ferroelectric ceramics of the Na0.5Bi0.5TiO3–PbTiO3 and Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 systems," Journal of the European Ceramic Society, vol. 21, pp. 1333-1336, 2001.
[77] J. K. Lee, J. Y. Yi, and K. S. Hong, "Dependence of incommensurate phase formation on vacancy type in La-doped (Na1/2Ba1/2)TiO3," Journal of Applied Physics, vol. 96, pp. 1174-1177, 2004.
[78] J. Suchanicz, J. Kusz, H. Bohm, H. Duda, J. P. Mercurio, and K. Konieczny, "Structural and dielectric properties of (Na 0.5Bi 0.5) 0.70Ba 0.30 TiO 3 ceramics," Journal of the European Ceramic Society, vol. 23, pp. 1559-1564, 2003.
[79] Y. Qu, D. Shan, and J. Song, "Effect of A-site substitution on crystal component and dielectric properties in Bi0.5Na0.5TiO3 ceramics," Materials Science and Engineering: B, vol. 121, pp. 148-151, 2005.
[80] X. Chen, H. Ma, W. Pan, M. Pang, P. Liu, and J. Zhou, "Microstructure, dielectric and ferroelectric properties of (NaxBi0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics: Effect of Na nonstoichiometry," Materials Chemistry and Physics, vol. 132, pp. 368-374, 2012.
[81] A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee, J. S. Kim, and I. W. Kim, "Effect of potassium concentration on the structure and electrical properties of lead-free Bi0.5 (Na,K)0.5 TiO3–BiAlO3 piezoelectric ceramics," Journal of Alloys and Compounds, vol. 509, pp. 3148-3154, 2011.
[82] Y. Q. Yao, T. Y. Tseng, C. C. Chou, and H. H. D. Chen, "Phase transition and piezoelectric property of (Bi0.5 Na0.5) 0.94 Ba0.06 Zry Ti1-y O3 (y=0-0.04) ceramics," Journal of Applied Physics, vol. 102, 2007.
[83] T. M. a. H. Funakubo, "Effect of Grain Size on Mechanical Properties of Full Dense Pb(Zr,Ti)O3 Ceramics," Japanese Journal of Applied Physics, vol. 49, p. 09MD13, 2010.
[84] V. A. I. G.A. Smolenskii, Dokl. Akad. Nauk SSSR, vol. 9, p. 653, 1954.
[85] A. I. A. G.A. Smolenskii, Sov. Phys. Tech. Phys., vol. 3, p. 1380, 1958.
[86] L. E. Cross, Ferroelectrics, vol. 76, p. 241, 1987.
[87] S. Nomura and K. Uchino, "RECENT APPLICATIONS OF PMN-BASED ELECTROSTRICTORS," Ferroelectrics, vol. 50, pp. 197-202, 1983.
[88] G. A. Smolenskii, J. Phys. Soc. Japan, vol. 28, p. 26, 1970.
[89] N. Setter and L. E. Cross, "The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics," Journal of Applied Physics, vol. 51, pp. 4356-4360, 1980.
[90] Z. L. C. X. Yao, L.E. cross, J. Appl. Phys., vol. 54, p. 3399, 1984.
[91] D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, "Freezing of the polarization fluctuations in lead magnesium niobate relaxors," Journal of Applied Physics, vol. 68, pp. 2916-2921, 1990.
[92] L. Gao, Y. Huang, Y. Hu, and H. Du, "Dielectric and ferroelectric properties of (1 − x)BaTiO3–xBi0.5Na0.5TiO3 ceramics," Ceramics International, vol. 33, pp. 1041-1046, 2007.
[93] T. Oh and M.-H. Kim, "Phase relation and dielectric properties in (Bi1/2 Na1/2)1−x Bax TiO3 TiO3 lead-free ceramics," Materials Science and Engineering: B, vol. 132, pp. 239-246, 2006.
[94] V. G. Bhide and N. J. Bapat, "Interferometric study of domain structure in barium titanate," Physica, vol. 27, pp. 531-540, 1961.

QR CODE