簡易檢索 / 詳目顯示

研究生: Mula Sigiro
Mula - Sigiro
論文名稱: 摻雜錸、金與鐵對二硫化鉬單晶結構之影響及其光學特性研究
Influence of Re, Au, and Fe doping on the structure and optical characteristics of MoS2 single crystals
指導教授: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
口試委員: 李奎毅
Kuei-Yi Lee
程光蛟
Kwong-Kau Tiong
林得裕
Der-Yuh Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 108
外文關鍵詞: single crystals, doping effects, optical spectroscopy
相關次數: 點閱:222下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Single crystals of MoS2 doped with Re, Fe, and Au have been grown by the chemical vapor transport method using bromine and iodine as a transporting agent. Detailed characterization of the materials are carried out by using X-ray diffraction, scanning transmission electron microscopy (STEM), raman, piezoreflectance, photoreflectance, electrolyte electroreflectance, and photoresponse.

    X-ray analysis confirm that undoped and Fe-doped MoS2 are two-layer hexagonal (2H) structures while Re- and Au-doped MoS2 are three layer rhombohedral (3R) structure. STEM image figured out that Re and Au atoms are uniformly distributed on the MoS2 and substitute the Mo lattice whereas Fe atoms are not uniformly distributed on MoS2, segregate into groups and disperse unevenly. Raman measurements on the basal plane revealed the two dominant first order Raman-active modes A1g and E2g while on the edge plane revealed the three dominant first order Raman-active modes E1g, A1g and E2g.

    The influence of doping on the optical properties are characterized by temperature-dependent PzR spectroscopy measurements in the temperature range between 25 and 300 K. The energies and broadening parameters of the A and B excitons have been determined accurately via a detailed line shape fit of the PzR spectra. We observed that Re and Au doping strongly reduces the splitting between A and B excitons as well as it causes the redshift of observed transitions in relation to the undoped MoS2 whereas the splitting between A and B for Fe-doped MoS2 is similar with undoped one. EER, PR, and photoresponse were carried out to confirm the origin of the broad peak as observed in PzR spectra.


    Single crystals of MoS2 doped with Re, Fe, and Au have been grown by the chemical vapor transport method using bromine and iodine as a transporting agent. Detailed characterization of the materials are carried out by using X-ray diffraction, scanning transmission electron microscopy (STEM), raman, piezoreflectance, photoreflectance, electrolyte electroreflectance, and photoresponse.

    X-ray analysis confirm that undoped and Fe-doped MoS2 are two-layer hexagonal (2H) structures while Re- and Au-doped MoS2 are three layer rhombohedral (3R) structure. STEM image figured out that Re and Au atoms are uniformly distributed on the MoS2 and substitute the Mo lattice whereas Fe atoms are not uniformly distributed on MoS2, segregate into groups and disperse unevenly. Raman measurements on the basal plane revealed the two dominant first order Raman-active modes A1g and E2g while on the edge plane revealed the three dominant first order Raman-active modes E1g, A1g and E2g.

    The influence of doping on the optical properties are characterized by temperature-dependent PzR spectroscopy measurements in the temperature range between 25 and 300 K. The energies and broadening parameters of the A and B excitons have been determined accurately via a detailed line shape fit of the PzR spectra. We observed that Re and Au doping strongly reduces the splitting between A and B excitons as well as it causes the redshift of observed transitions in relation to the undoped MoS2 whereas the splitting between A and B for Fe-doped MoS2 is similar with undoped one. EER, PR, and photoresponse were carried out to confirm the origin of the broad peak as observed in PzR spectra.

    Abstract I Acknowledgements II Table of Contents III List of Figures V List of Tables IX Chapter 1. Introduction 1 1.1 Transition metal disulfides MoS2 1 1.2 Survey of recent works of doping effects in MoS2 single crystals 9 Chapter 2 Single crystals growth 12 Chapter 3 Experimental details 15 3.1 Powder X-ray diffraction 15 3.2 Transmission electron microscopy (TEM) 17 3.3 Raman spectroscopy 18 3.4 Piezoreflectance (PzR) modulation spectroscopy 20 3.5 Photoreflectance (PR) modulation spectroscopy 23 3.6 Electrolyte electroreflectance (EER) 24 3.7 Photovoltaic response (Photoresponse) 26 Chapter 4 Studies of Re-doped MoS2 Single Crystals 28 4.1 Powder X-ray diffraction 28 4.2 Scanning transmission electron microscopy (STEM) images 29 4.3 Raman spectra 32 4.4 Room temperature piezoreflectance (PzR) 38 4.5 Temperature dependent piezoreflectance 40 4.6 Electrolyte electroreflectance (EER) 50 4.7 Comparison of PzR, EER, and photoresponse 53 Chapter 5 Studies of Au-doped MoS2 Single Crystals 55 5.1 Powder X-ray diffraction 55 5.2 Scanning transmission electron microscopy (STEM) images 56 5.3 Room temperature piezoreflectance (PzR) 58 5.4 Temperature dependent piezoreflectance 60 5.5 Electrolyte electroreflectance (EER) 71 5.6 Comparison of PzR, EER, and photoresponse 72 Chapter 6 Studies of Fe-doped MoS2 Single Crystals 74 6.1 Powder X-ray diffraction 74 6.2 Scanning transmission electron microscopy (STEM) images 75 6.3 Room temperature piezoreflectance (PzR) 76 6.4 Temperature dependent piezoreflectance 77 6.5 Photoreflectance (PR) 89 6.6 Electrolyte electroreflectance (EER) 90 6.7 Comparison of PzR, EER, and photoresponse 92 Chapter 7 Conclusion 94 References 96 Autobiography 105 Publications 106

    [1] J. Chang, L. F. Register, and S. K. Banerjee, “Comparison of ballistic transport characteristics of monolayer transition metal dichalcogenides (TMDs) MX2 (M= Mo, W; X= S, Se, Te) n-MOSFETs”, International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 2013, pp. 408–411.

    [2] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties”, Adv. Phys., Vol. 18, pp. 193–335 (1969).

    [3] D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, "Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides". Physical Review Letters, Vol. 108, 196802 (2012).

    [4] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liua, and J. Feng, "Valley-selective circular dichroism of monolayer molybdenum disulphide", Nature Communications, Vol. 3, pp. 1-5 (2012).

    [5] G. B. Liu, W. Y. Shan, Y. Yao, W. Yao, and D. Xiao, "Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides", Physical Review B, Vol. 88, 085433 (2013).

    [6] S. Zeng, S. Hu, J. Xia, T. Anderson, X. Q. Dinh, X. M. Meng, P. Coquet, and K. T. Yong. "Graphene–MoS2 Hybrid Nanostructures enhanced Surface Plasmon Resonance Biosensors", Sensors and Actuators B: Chemical, Vol. 207, pp. 801–810 (2015).

    [7] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, "Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States", Physical Review Letters, Vol. 111, 216805 (2013).

    [8] G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, "Non-linear Optical Spectroscopy of Excited Exciton States for Efficient Valley Coherence Generation in WSe2 Monolayers", arXiv:1404.0056 (2014).

    [9] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, "Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2", Physical Review Letters, Vol. 113, 076802 (2014).

    [10] Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, "Probing excitonic dark states in single-layer tungsten disulphide". Nature, Vol. 513, pp. 214–218 (2014).

    [11] M. M. Ugeda, A. J. Bradley, S. F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, "Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor", Nature Materials. Vol. 13, pp. 1091–1095 (2014).

    [12] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2”, Phys. Rev. B, vol. 83, 245213 (2011).
    [13] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct Gap Semiconductor”, Phys. Rev. Lett., Vol. 105, 136805 (2010).
    [14] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging Photoluminescence in Monolayer MoS2”, Nano Letters, Vol. 10, pp. 1271-1275 (2010).

    [15] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nat. Nanotechnol 7, pp. 699-712, (2012).

    [16] T. Boker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Voss, P. Kruger, A. Mazur, and J. Pollmann, "Band structure of MoS2, MoSe2, and alpha-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations", Physical Review B, Vol. 64, 235305 (2001).

    [17] B. Schonfeld, J. J. Huang, and S. C. Moss, "Anisotropic mean-square displacements (MSD) in single-crystals of 2H-MoS2 and 3R-MoS2", Acta Crystallographica Section B-Structural Science, Vol. 39, pp. 404-407 (1983).

    [18] A. Enyashin, S. Gemming, and G. Seifert, "Nanosized allotropes of molybdenum disulfide", The European Physical Journal Special Topics, Vol. 149, pp. 103-125 (2007).

    [19] S. Sugai and T. Ueda, "High-pressure raman-spectroscopy in the layered materials 2H-MoS2, 2H-MoSe2, and 2H-MoTe2", Physical Review B, Vol. 26, pp. 6554-6558 (1982).

    [20] A. Kumar and P. K. Ahluwalia, "Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors", European Physical Journal B, Vol. 85, 186 (2012).

    [21] T. J. Wieting, A. Grisel, and F. Levy, "Interlayer bonding and localized charge in MoSe2 and α-MoTe2", Physica B+C, Vol. 99, pp. 337-342 (1980).

    [22] K. A. N. Duerloo, M. T. Ong, and E. J. Reed, "Intrinsic piezoelectricity in twodimensional materials", Journal of Physical Chemistry Letters, Vol. 3, pp. 2871-2876 (2012).

    [23] C. Grossiord, K. Varlot, J. M. Martin, T. Le Mogne, C. Esnouf, and K. Inoue, "MoS2, single sheet lubrication by molybdenum dithiocarbamate", Tribology International, Vol. 31, pp. 737-743 (1998).

    [24] I. M. Allam, "Solid lubricants for applications at elevated-temperatures - a review", Journal of Materials Science, Vol. 26, pp. 3977-3984 (1991).

    [25] E. Bergmann, G. Melet, C. Muller, and A. Simonvermot, "Friction properties of sputtered dichalcogenide layers", Tribology International, Vol. 14, pp. 329-332 (1981).

    [26] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al., "Two-dimensional atomic crystals", Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, pp. 10451-10453 (2005).

    [27] J. Morales, J. Santos, and J. L. Tirado, "Electrochemical studies of lithium and sodium intercalation in MoSe2", Solid State Ionics, Vol. 83, pp. 57-64 (1996).

    [28] K. Taniguchi, A. Matsumoto, H. Shimotani, and H. Takagi, "Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2", Applied Physics Letters, Vol. 101, 042603 (2012).

    [29] P. M. Voyles, D. A. Muller, J. L. Grazul, P. H. Citrin, and H. J. L. Gossmann, “Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si”, Nature, Vol. 416, pp. 826-829 (2002).

    [30] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular Doping of Graphene”, Nano Lett., Vol. 8, pp. 173-177 (2008).

    [31] Y. C. Lin, C. Y. Lin, and P. W. Chiu, “Controllable graphene N-doping with ammonia plasma”, Appl. Phys. Lett. 96, 133110 (2010).

    [32] H. Medina, Y. C. Lin, D. Obergfell, and P. W. Chiu,” Tuning of charge densities in graphene by molecule doping”, Adv. Funct. Mater. 21, pp. 2687-2692 (2011).

    [33] O. L. Krivanek, M. F. Chisholm, V. Nicolosi, T. J. Pennycook, G. J. Corbin, N. Dellby, M. F. Murfitt, C. S. Own, Z. S. Szilagyi, M. P. Oxley, S. T. Pantelides, and S. J. Pennycook, “Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy”, Nature 464, pp. 571-574 (2010).

    [34] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nat. Nanotech., Vol. 7, pp. 699-712 (2012).

    [35] L. E. Conroy and K. C. Park,”Electrical properties of the Group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide”, Inorg. Chem., Vol. 7, pp. 459-463 (1968).

    [36] E. A. Marseglia, “Transition metal dichalcogenides and their intercalates”, Int. Rev. Phys. Chem., Vol. 3, pp. 177–216 (1983)

    [37] F. R. Gamble, B. G. Silbernagel,” Anisotropy of the proton spin–lattice relaxation time in the superconducting intercalation complex TaS2(NH3): Structural and bonding implications”, J. Chem. Phys., Vol. 63, 2544 (1975).

    [38] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forro, and E. Tutis, “From Mott state to superconductivity in 1T-TaS2”, Nat. Mater., Vol. 7, pp. 960-965 (2008)

    [39] S. W. Han, H. Kwon, S. K. Kim, S. Ryu, W. S. Yun, D. H. Kim, J. H. Hwang, J. S. Kang, J. Baik, H. J. Shin, and S. C. Hong, “Band-gap transition induced by interlayer van der Waals interaction in MoS2”, Phys. Rev. B, Vol. 84, 045409 (2011).

    [40] K. L. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor”, Phys. Rev. Lett., Vol. 105, 136805 (2010).

    [41] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, “Single-layer MoS2 transistors”, Nat. Nanotech. 6, pp. 147-150 (2011).

    [42] K. K. Tiong, Y. S. Huang, C. H. Ho, “Electrical and optical anisotropic properties of rhenium-doped molybdenum Disulphide”, J. Alloys Compd., Vol. 317-318, pp. 208-212 (2001).

    [43] F. L. Deepak, R. Popovitz-Brio, Y. Feldman, H. Cohen, A. Enyashin, G. Seifert, and R. Tenne, “Fullerene-Like Mo(W)1-xRexS2 nanoparticles”, Chem. Asian. J., Vol. 3, pp. 1568-1574 (2008).

    [44] L. Rapoport, A. Moshkovich, V. Perfilyev, A. Laikhtman, I. Lapsker, L. Yadgarov, R. Rosentsveig, and R. Tenne, “"High lubricity of re-doped fullerene-like MoS2 nanoparticles", Tribol. Lett., Vol. 45, pp. 257-264 (2012).

    [45] V. V. Ivanovskaya, A. Zobelli, A. Gloter, N. Brun, V. Serin, and C. Colliex, “Ab initio study of bilateral doping within the MoS2-NbS2 system”, Phys. Rev. B 78, 134104 (2008).

    [46] F. L. Deepak, H. Cohen, S. Cohen, Y. Feldman, R. Popovitz-Brio, D. Azulay, O. Millo, and R. Tenne, “Fullerene-Like (IF) NbxMo1-xS2 Nanoparticles”, J. Am. Chem. Soc., Vol. 129, pp. 12549-12562 (2007).

    [47] M. Remskar, Z. Skraba, P. Stadelmann, and F. Levy, “Structural Stabilization of New Compounds: MoS2 and WS2 Micro- and Nanotubes Alloyed with Gold and Silver” Adv. Mater., Vol. 12, pp. 814-818 (2000).

    [48] M. Remskar, Z. Skraba, R. Sanjines, and f. Levy, “"MoS2 and WS2 nanotubes alloyed with gold and silver", Surf. Rev. Lett., Vol. 6, pp. 1283-1287 (1999).

    [49] A. H. Clark, “An occurrence of the assemblage native sulfur-covellite Cu5.5xFexS6”, N. Jahrbuchf. Mineral. Monatsheffe, Vol. 3, 33 (1970).

    [50] A. N. Zelikman, G. V. Indenbaum, M. V. Teslitskaya, and V. P. Shalankova “Structural Transformations in Synthe- tic MoS2”, Sov. Phys. Crystallogr., Vol. 14, pp. 687-691.

    [51] K. K. Tiong, P. C. Liao, C. H. Ho, and Y. S. Huang, “Growth and characterization of rhenium-doped MoS2 single crystals”, J. Cryst. Growth, Vol. 205, 543-547 (1999).

    [52] J. H. Dettingmeijer and B. Meinders, “Zum system W/O/J. I: das Gleichgewicht WO2, f + J2, g = WO2J2,g”, Zeitschrift fur anorganische und allgemeine Chemie, Vol. 357, pp. 1–10 (1968)

    [53] H. Schafer, "Chemical Transport Reactions" Academic Press, New York, 1963.

    [54] A. E. van Arkel, J. H. de Boer, "Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall". Zeitschrift fur anorganische und allgemeine Chemie, Vol. 148, pp. 345–350 (1925).

    [55] G. R. Wilkinson, (1973): Raman spectra of ionic, covalent and metallic crystals. In: "The Raman effect. Applications", (Anderson A, ed.), Vol. 2, Chapter 5. Dekker, New York.

    [56] Y. S. Huang and F. H. Pollak, “Non-destructive, room temperature characterization of wafer-sized III–V semiconductor device structures using contactless electromodulation and wavelength-modulated surface photovoltage spectroscopy”, Phys. Status Solidi A, Vol. 202, pp. 1193-1207 (2005).

    [57] F. H. Pollak and H. Shen, “Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surfaces/ Interfaces and Devices”, Mater. Sci. Eng. R., Vol. 10, pp. 275-374 (1993).

    [58] R. Zan, U. Bangert, Q. Ramasse, and K. S. Novoselov, “Scanning Transmission Electron Microscopy of Metal-Graphene Interaction”, J. Phys. Chem. Lett., Vol. 3, pp. 953-958 (2012).

    [59] H. P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, “Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping”, Phys. Rev. Lett., Vol. 109, 035503 (2012).

    [60] W. A. McKinley and H. Feshbach. “The Coulomb Scattering of Relativistic Electrons by Nuclei”, Phys. Rev., Vol. 74, 1759 (1948).

    [61] Y. C. Lin, D. O. Dumcenco, H. P. Komsa, Y. Niimi, A. V. Krasheninnikov, Y. S. Huang, K. Suenaga, “Properties of Individual Dopant Atoms in Single-Layer MoS2: Atomic Structure, Migration, and Enhanced Reactivity”, Adv. Mater., Vol. 26, pp. 2857- 2861 (2014).

    [62] T. J. Wieting, J. L. Verble, “Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal MoS2”, Phys. Rev. B, Vol. 3, 4286 (1971).

    [63] J. M. Chen, C. S. Wang, “Second order Raman spectrum of MoS2”, Solid State Commun., Vol. 14, pp. 857–860 (1974).

    [64] T. Sekine, T. Nakashizu, K. Toyoda, K. Uchinokura, E. Matsuura, “Raman scattering in layered compound 2H-WS2”, Solid State Commun., Vol. 35, pp. 371-373 (1980).

    [65] C. Sourisseau, M. Fouassier, “Resonance Raman, inelastic neutron scattering and lattice dynamics studies of 2H-WS2”, Mat. Sci. Eng. B, Vol. 3, pp. 119-123 (1989).

    [66] G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, G. Dresselhaus, “Optical Properties of MS2 (M=Mo,W) Inorganic Fullerene-Like and Nanotube Material”, J. Mater. Res, Vol. 13, pp. 9-14 (1998).

    [67] E. Dobardzic, B. Dakic, M. Damnjanovic, I. Milosˇevic, “Raman and infrared-active modes in MS2 nanotubes (M=Mo,W)”, Phys. Rev. B, Vol. 74, 033403 (2006).

    [68] M. Viršek, A. Jesih, I. Milošević, M. Damnjanović, M. Remškar, “Raman scattering of the MoS2 and WS2 single nanotubes”, Surface Science, Vol. 601, pp. 2868–2872 (2007).

    [69] D. E. Aspnes, Optical Properties of Semiconductors; Handbook on Semiconductors, ed M. Balkanski (North-Holland, Amsterdam, 1980), p. 109.

    [70] A. R. Beal, J.C. Knights, and W.Y. Liang, “Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination”, Journal of Physics C: Solid State Physics, Vol. 5, pp. 3540–3551 (1972).

    [71] E. Fortin and F. Raga, “Excitons in molybdenum disulphide”, Phys. Rev. B, Vol. 11, 905 (1975).

    [72] A. R. Beal and W.Y. Liang, “Excitons in 2H-WSe2 and 3R-WS2”, J. Phys. C: Solid State Phys., Vol. 9, 2459 (1976).

    [73] C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao, and K.K. Tiong, “Temperature dependence of energies and broadening parameters of the band-edge excitons of Mo1-xWxS2 single crystals”, J. Phys.: Condens. Matter, Vol. 10, 9317 (1998).

    [74] P. C. Yen, H. P. Hsu, Y. T. Liu, Y. S. Huang, and K K Tiong, “Temperature dependences of energies and broadening parameters of the band-edge excitons of Re-doped WS2 and 2H-WS2 single crystals”, J. Phys.: Condens. Matter, Vol. 16, 6995 (2004).

    [75] A. R. Beal, W.Y. Liang, and H. P. Huges, “Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2”, Journal of Physics: Condensed Matter, Vol. 9, pp. 2449–2457 (1976).

    [76] S. L. Chuang, Physics of Optoelectronic Devices (Wiley Series in Pure and Applied Optics), ed J W Goodman, Wiley, New York, 1995.

    [77] R. Coehoorn, C. Haas, Dijtkstra, C. J. F Flipse, R. A. de Groot, A. Wold, “Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy”, Physical Review B, Vol. 35, pp. 6195–6202 (1987).

    [78] R. Coehoorn, C. Haas, R. A. de Groot, “Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps”, Physical Review B, Vol. 35, pp. 6203–6206 (1987).

    [79] T. Straub, K. Fauth, T. Finteis, M. Hengsberger, R. Claessen, P. Steiner, “S. Hufner, Valence-band maximum in the layered semiconductor WSe2: Application of constant-energy contour mapping by photoemission”, Physical Review B, Vol. 53, pp. 6152–16155 (1969).

    [80] Y. P. Varnish, “Temperature dependence of the energy gap in semiconductors”, Physica, Vol. 34, pp. 149–154 (1967).

    [81] C. H. Ho, P. C. Liao, Y. S. Huang, K. K. Tiong, “In-plane anisotropy of the optical and electrical properties of layered ReS2 crystals”, Phys. Rev. B, Vol. 55, 608 (1997).

    [82] P. Lantenschlager, M. Garriga, S. Logothetidis, M. Cardona M, “Interband critical points of GaAs and their temperature dependence”, Phys. Rev. B, Vol. 35, 9174 (1987).

    [83] P. Lantenschlager, M. Garriga, L. Vina, M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon”, Phys. Rev. B, Vol. 36, 4821 (1987).

    [84] K. K. Tiong, T. S. Shou, C. H. Ho, “Temperature dependence piezoreflectance study of the effect of doping MoS2 with rhenium”, J. Phys.: Condens. Matter, Vol. 12, 3441 (2000).

    [85] L. Malikova, W. Krystek, F. H. Pollak, N. Dai, A. Cavus, M.C. Tamargo, “Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se”, Phys. Rev. B, Vol. 54, 1819 (1996).

    [86] M. Tanaka, H. Fukutani, G. Kuwabara, “Stress-optical studies of VI B transition metal dichalcogenides”, Solid State Commun., Vol. 26, pp. 911-912 (1978).

    [87] D. F. Blossey, “Wannier Exciton in an Electric Field. II. Electroabsorption in Direct-Band-Gap Solids”, Phys. Rev. B, Vol.3, 1382 (1971).

    [88] J. Gandia, M. Pujadas, P. Salvador, “ Electrolyte electroreflectance: Easy and reliable flat-band potential measurements”, J. Electroanal. Chem., Vol. 244, 69 (1988).

    [89] D. E. Aspnes, and A. Frova, “Influence of spatially dependent perturbations on modulated reflectance and absorption of solids”, Solid State Commun., Vol. 7, 155 (1969).

    [90] C. Ballif, M. Regula, P. E. Schmid, M. Remskar, R. Sanjines, and F. Levy, “Preparation and characterization of highly oriented, photoconducting WS2 thin films”, Appl. Phys. A, Vol. 62, pp. 543-546 (1996).

    [91] C. Ballif, M. Regula, and F. Levy, “Optical properties of tungsten disulfide single crystals doped with gold”, Sol. Energy Mater. Sol. Cells, Vol. 57, pp. 189–207 (1999)

    [92] E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, and J. Tedd, J. Pouzet, J. Salardenne, “MS2 (M = W, Mo) photosensitive thin films for solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 46, pp. 115-121 (1997).

    [93] J. Lin, H. Li, H. Zhang, and W. Chen, “Plasmonic enhancement of photocurrent in MoS2 field-effect transistor”, Applied Physics Letters, Vol. 102, 203109 (2013).

    [94] T. Gandke, L. Ley, and M. Cardona, “Valence Band Structure of PbS from Angle-Resolved Photoemission”, Physical Review Letters, Vol. 38, pp. 1033–1036 (1977).

    [95] J. Ziman, “Electrons and Phonons: The Theory of Transport Phenomena in Solids”, Oxford University Press, Clarendon, 1960.

    [96] S. I. Uchida, and S. Tanaka, “Optical Phonon Modes and Localized Effective Charges of Transition-Metal Dichalcogenides”, Journal of the Physical Society of Japan, vol.45 , pp. 153–161 (1978).

    [97] C. A. Papageorgopoulos, and J.-L. Desplat, “Interaction of cesium and oxygen on W(110): II. Codeposition: cesium oxide formation”, Surface Sci., Vol. 92, pp. 119-132 (1980).

    [98] Papageorgopoulos, “Thermal stability of cesium on oxygenated W(110)” Surface Sci., Vol. 104, pp. 643-659 (1981).

    [99] S. L. Chuang, “Physics of Optoelectronic Devices”, Wiley, New York, 1995.

    [100] M. Kamaratos, and C. Papageorgopoulos, “Intercalation of MoS2(0001) with Fe, Ni and Pd” Solid State Commun., Vol. 61, pp. 567–569 (1970).

    [101] A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2: Influence of interlayer van der Waals interactions”, Phys. Rev. B, Vol. 64, 205416 (2001).

    [102] C. Tiwari, R. Sharma, and Y. Sharma, “Ab-initio study of Fe doped molybedenum dichalcogenides”, AIP Conf. Proc. 1512, pp. 852–853 (2013).

    [103] B. L. Evans and P. A. Young, “Optical Absorption and Dispersion in Molybdenum Disulphide”, Proc. Roy. Sot. (London) A, Vol. 284, 402 (1965).

    [104] R. Fivaz and E. Mooser, “Mobility of Charge Carriers in Semiconducting Layer Structures”, Phys. Rev., Vol. 163, 743 (1967).

    [105] C. A. Papageorgopoulos, “Adsorption of Cs and O2 on MoS2”, Surf. Sci., Vol. 75, pp. 17–28 (1978).

    [106] Th. Bakas and N-H.J. Gangas, “Mossbauer investigation of the layered compound FeMo2S4”, J. Phys. C, Solid State Phys., Vol. 13, L561 (1980).

    無法下載圖示 全文公開日期 2020/01/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2020/01/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE