簡易檢索 / 詳目顯示

研究生: 黃荐苰
Chien-hung Huang
論文名稱: 刮刀成型技術製備多層陶瓷元件之微觀與電性研究
Microstructure and electrical properties of multilayer ceramic components by tape-casting method
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蘇裕軒
none
彭世典
Shih-Tien Peng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 刮刀成型壓電致動器熱敏電阻
外文關鍵詞: tape-casting, piezoelectric, actuator, negative temperature coefficient thermistor
相關次數: 點閱:183下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在探討不同結構之多層陶瓷元件的電性和界面匹配性。本研究主要分為兩部份:(1)多層式壓電致動器界面微觀與電性探討;(2)負溫度係數熱敏電阻元件電性與界面匹配研究。
    在第一部分方面,目前壓電致動器元件,所面臨之主要問題為商用的壓電材料其燒結溫度均須1200℃以上,因此必須使用價格昂貴的貴金屬作為內電極,因此本實驗選用壓電特性優異的PZNZT材料系統,利用刮刀成型技術製備壓電陶瓷層,搭配70Ag-30Pd金屬內電極,運用共燒技術製作多層式壓電致動器(MLCA),分別探討於不同溫度處理下其壓電、介電特性,最後對其電壓-位移量以及疲勞特性做一探討。由實驗結果顯示,試片燒結溫度可降低至900℃,並且於燒結1000℃持溫兩小時後其壓電特性Kp與d33分別達到最高的0.7和385 pc/N。在SEM微觀結構圖中得知,燒結1000℃持溫兩小時後其陶瓷與金屬界面接合性良好,並且陶瓷層與金屬電極厚度分別為100 μm與3 μm。電壓-位移量量測中發現,在200 V驅動電壓下其元件位移量與應變量分別為0.73 μm和0.073%。而疲勞特性量測則在105 cycle後開始衰減,主要原因來自於陶瓷/金屬電極界面破壞,使可作用電場降低,造成特性下降,另一原因為銀擴散至陶瓷層,造成陶瓷內部氧空缺的產生使得陶瓷材料容易產生電域釘鎖(domain pinning)的現象,疲勞提早發生。
    在第二部份方面,以具有尖晶石結構之Mn系氧化物陶瓷,其電阻會隨著溫度上升而急速下降,此特性被應用於負溫度係數(NTC)熱敏電阻元件,隨著科技的發展,NTC元件的也開始朝向多層式結構發展。目前多層式負溫度係數熱敏電阻元件,所面臨之主要問題為陶瓷與內電極間匹配性不足,因此容易使元件產生翹曲、裂紋、脫層現象發生。因此本實驗選用Mn-Ni與Mn-Co-Cu兩種熱敏電阻材料系統,除了探討其材料的晶體結構、導電行為、相對應之電阻特性,並對其製做成多層元件後,其陶瓷與金屬間之界面結合性與反應行為做一研究。由實驗結果顯示,在Mn-Ni系統中,當Ni含量低於0.4以下容易形成Mn3O4二次相,並且隨著Ni含量的增加,電阻率有整體下降的趨勢,並於Ni=0.95時電阻率達到最低,而在Mn-Co-Cu系統中,隨著Cu含量的增加,電阻率有逐漸下降的趨勢,推斷為Cu+與Cu2+離子在B-site位置的存在,促使更多Mn4+的生成,增大了載流子的濃度有關。而由SEM觀察得之,此兩材料系統各成份配比整體致密度高,無大量孔洞產生,並且其理論密度皆已達到95%~98%之間。由熱膨脹分析發現,此兩材料系統各成份配比的曲線都呈現穩定的斜率(TEC:12.7~18.9 10-6K-1),並無任何劇烈的斜率轉折點。不過此值皆高於熱敏電阻元件常用之金屬內電極Pd(TEC:11.5×10-6K-1)。而在陶瓷與內電極之匹配方面,藉由在金屬內電極Pd膠內添加7wt%的NTC陶瓷材料,藉此拉近陶瓷/金屬間熱膨脹係數,經過改良後的電極與陶瓷間的匹配性的確獲得改善,並且無裂紋的產生。


    This thesis discussed the electrical properties and interfacial compatibility of multilayer ceramic components. The thesis was divided into two parts: (1) microstructure and electrical properties of multilayer ceramic actuators (MLCA) and (2) interfacial compatibility and electrical properties of negative temperature coefficient (NTC) thermistor.
    In the first part, PZNZT, whose piezoelectric properties were superior, was chosen as the piezoelectric layer, and 70Ag-30Pd was chosen as the metal electrode. The specimen was prepared by tape casting followed by co-firing. The study primarily analyzed the effect of various co-firing temperature on piezoelectric, dielectric, fatigue characteristics as well as voltage-displacement. The result showed that the lowest firing temperature was reduced to 900℃; also, Kp and d33 reached 0.7 and 385pC/N after firing at 1000℃ for two hours. For the same condition, the analysis of microstructure from SEM micrographs revealed that the piezoelectric and metal layer remained adhered to each other. The thickness of former and later was 100 μm and 3μm, respectively. The measurement of voltage-displacement gave that the displacement and strain percentage was 0.73μm and 0.073%. For the fatigue test, displacement decreased obviously after 105 cycles. One reason could be that the electric field was reduced due to the loss of adherence of interface. The other reason was that the diffusion of Ag into piezoelectric layer caused the generation of oxygen vacancy, resulting in the so-called domain pinning, so the fatigue occurred at less cycles.
    In the second part, Mn-Ni and Mn-Co-Cu, NTC materials, were chosen for studying their crystal structure, conducting behavior, and NTC characteristics. In addition, those two materials were used in fabrication of multilayer components, so the adherence to metal electrodes and interfacial reactions were also studied. In Mn-Ni system, the second phase, Mn3O4, was formed if the content of Ni was lower than 0.4. Furthermore, the overall resistivity decreased as the content of Ni increased. In Mn-Co-Cu system, as the content of Cu increased, the resistivity decreased gradually. The reason could be that Cu+ and Cu2+ occupied B-site; therefore, the creation of extra Mn4+ increased the concentration of carriers. The SEM micrographs showed that the specimens of two systems were dense with theoretical density 95%~98%, and no enormous voids were observed. Thermal Dilatometric analysis (TDA) revealed that thermal expansion coefficient (TEC) ranged from 12.7 to 18.9*10-6K-1; moreover, no abrupt slope changes or turning points were found. The result for the compatibility between the ceramics and electrodes showed that adding 7 wt% NTC ceramics into Pd electrode reduced the difference of TEC, and no cracking was found. The interfacial compatibility was improved

    摘要 I Abstract IV 目錄 V 圖目錄 IX 表目錄 XI 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 1 第二章 文獻回顧 5 2.1 壓電材料簡介 5 2.1.1鈣鈦礦晶體結構(ABO3) 5 2.1.2壓電原理與效應 7 2.1.3壓電陶瓷之致動器應用及規格 9 2.1.4壓電特性參數 13 2.1.5鋅鈮鋯鈦酸鉛(PZN-PZT)複合材料系統 15 2.2 NTC熱敏電阻材料簡介 19 2.2.1 尖晶石晶體結構(AB2O4) 19 2.2.2 NTC熱敏電阻導電方式和機構 22 2.2.3 Mn-Ni尖晶石相之生成 23 2.2.4 NTC熱敏電阻材料之發展狀況 24 2.2.5 NTC 之特性參數 26 2.3電極材料 27 2.3.1銀電極 29 2.3.2銀-鈀電極 29 2.4厚膜製程簡介 30 2.4.1 刮刀成型(Tape casting) 31 2.4.2 網印技術 34 第三章 實驗方法及材料的特性分析 36 3.1實驗藥品規格 36 3-2實驗儀器規格 38 3-3實驗步驟 40 3.3.1粉末製備 40 3.3.2積層試片製作 40 3.3.3脫脂與燒結 41 3.3.4電極與極化處理製作 41 3.4基本性質量測與觀察 42 3.4.1粉末粒徑分析: 42 3.4.2熱重分析法(Thermogravimetry,TG)量測: 42 3.4.3熱機械分析儀(TMA)之量測: 43 3.4.4漿料黏度量測: 43 3.4.5密度量測: 43 3.4.6 X光繞射分析: 44 3.4.7掃瞄式電子顯微鏡(SEM)分析: 44 3.4.8 XPS光譜量測 44 3.5壓電材料電性量測 45 3.5.1 極化值與電場(P-E)曲線量測 45 3.5.2 介電常數對溫度(D-T)曲線量測 45 3.5.3 壓電特性量測 46 3.5.4壓電常數 (d33)量測 46 3.5.5壓電位移量量測 47 3.6熱敏電阻材料電性量測 47 3.6.1 電阻-溫度特性 47 第四章 壓電致動器之實驗結果與討論 52 4.1 PZNZT陶瓷薄帶(tape)探討 52 4.1.1 PZNZT粉末粒徑分析 52 4.1.2漿料參數對陶瓷薄帶的影響 53 4.1.3薄帶燒結TGA分析 55 4.1.4不同燒結溫度對鈣鈦礦成相的影響 56 4.1.5不同燒結溫度對微觀結構與晶粒尺寸分析 59 4.1.6不同燒結溫度對鐵電特性的影響 64 4.1.7不同燒結溫度對壓電特性的影響 68 4.1.8不同燒結溫度對介電常數的影響 71 4.1.9 不同燒結溫度對漏電流的影響 74 4.2多層陶瓷致動器探討 76 4.2.1多層陶瓷金屬與陶瓷界面之微觀結構 76 4.2.2多層陶瓷對位移量與應變量的影響 78 4.2.3多層陶瓷對疲勞特性的影響 80 4.2.4陶瓷與內電極介面擴散之影響 83 第五章 熱敏電阻元件之結果與討論 85 5.1熱敏電阻陶瓷材料探討 85 5.1.1 不同成份之XRD繞射分析 85 5.1.2 燒結塊材密度與表面微觀分析 89 5.1.3不同成份材料的熱膨脹性質研究 95 5.1.4不同成份材料的XPS分析 98 5.1.5不同成份對電阻-溫度(ρ-T)與B值的影響 101 5.2多層熱敏電阻探討 106 5.2.1 陶瓷與內電極之匹配性 106 第六章 結論 108 參考文獻 113 附錄 117 Appendix(一) 117 Appendix(二) 118

    1. Uchino, K., Ferroelectric Devices. New York, 2000.
    2. Haertling, G.H., Rainbow Ceramics:A New Type of Ultra-High Displacement Actuator. Am. Ceram. Soc. Bull., 1994. 73(1): p. 93-96.
    3. Li;, X., et al., Electromechanical Properties of a Ceramic d31-Gradient Flextensional Actuator. J. Am. Ceram. Soc, 2001. 84(5): p. 996–1003.
    4. Zuo, R., et al., Effects of Additives on the Interfacial Microstructureof Cofired Electrode-Ceramic Multilayer Systems. J. Am. Ceram. Soc, 2002. 85(4): p. 787–93.
    5. 吳朗, 電子陶瓷-壓電. 全欣科技圖書, 民國83年.
    6. http://www.eleceram.com.tw/c-pro-ceramics.htm.
    7. http://www.nec-tokin.com/.
    8. Xu, Y.H., Ferroelectric Materials and Their Applications. New York, 1991.
    9. B.Jaffe, R.W.Cook, and H.Jaffe, Piezoelectric Ceramics. Academic Press.
    10. R.C.Buchanan, Ceramic Matericals for Electronics. Marcel Dekker Inc.
    11. M.Takehashi, Space Charge Effect in Lead Zirconate Titanate Ceramics Caused by the addition of Impurities. Jap.J.Appl,Phys, 1970. 9(10): p. 1236-1264.
    12. Zhu, W. and L.E. Cross, Direct evidence of ferroelastic participation in 180簞 polarization switching and fatigue for 111 oriented rhombohedral ferroelectric 0.955 Pb(Zn1/3Nb2/3)O3:0.045 PbTiO3 single crystals. Applied Physics Letters, 2004. 84(13): p. 2388-2390.
    13. 吳夏語, 鋅鈮鋯鈦酸鉛材料系統應用於超音波元件之電性和疲勞研究. 國立台灣科技大學碩士論文, 2006.
    14. Levin, E.M., C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists. The American Ceramic Society, USA, 1985: p. pp. 256.
    15. Schmidt, R., M. Parlak, and A.W. Brinkman, Control of the thickness distribution of evaporated functional electroceramic NTC thermistor thin films. Journal of Materials Processing Technology, 2008. 199(1-3): p. 412-416.
    16. R.W.A.Scarr and R.A.Setterington, Thermistors,Theory,Manufacture and Application. I.E.E,Paper No.3176M, 1960: p. 395-405.
    17. 李言榮, 電子材料導論. 清華大學出版社, 2005.
    18. E.D.Macklen, Thermistors. Electrochemical Publication Ltd.,Ary,Scotland,, 1979: p. p29-146.
    19. Wiley, J., Dielectrics and Waves. New York, 1954.
    20. Gillot, B., et al., Electrical properties and cationic distribution in cubic nickel manganite spinels NixMn3-xO4, 0.57<x<1. Solid State Ionics. 44(3-4): p. 275-280.
    21. Wickham, D.G., Solid-phase equilibria in the system NiOMn2O3O2. Journal of Inorganic and Nuclear Chemistry, 1964. 26(8): p. 1369-1377.
    22. Park, K., et al., Improvement in the electrical stability of Mn-Ni-Co-O NTC thermistors by substituting Cr2O3 for Co3O4. Journal of Alloys and Compounds, 2007. 437(1-2): p. 211-214.
    23. Park, K., Microstructure and electrical properties of Ni1.0Mn2-xZrxO4 (0<=x<=1.0) negative temperature coefficient thermistors. Materials Science and Engineering B, 2003. 104(1-2): p. 9-14.
    24. Park, K. and S.J. Yun, Influence of the composition on the electrical properties of (Mn2.1 - xNi0.9Six)O4 negative temperature coefficient thermistors. Journal of Materials Science: Materials in Electronics, 2004. 15(6): p. 359-362.
    25. Yue, Z., et al., Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics. Journal of Alloys and Compounds, 2004. 375(1-2): p. 243-248.
    26. Hosseini, M., Effect of cation composition on the electrical properties and aging of Mn-Co-Ni thermistors. Ceramics International, 2000. 26(3): p. 245-249.
    27. Hrovat, M., et al. The evolution of spinel-based conductive phase in thick-film NTC thermistors. 2006. St. Marienthal, Germany: Inst. of Elec. and Elec. Eng. Computer Society.
    28. Wu, W., et al., Top-interface-controlled fatigue of epitaxial Pb(Zr0.52Ti0.48)O3 ferroelectric thin films on La0.7Sr0.3MnO3 electrodes. Applied Physics Letters, 2000. 77(21): p. 3441-3443.
    29. Moussa, S.M., B.J. Kennedy, and T. Vogt, Structural variants in ABO3 type perovskite oxides. On the structure of BaPbO3. Solid State Communications, 2001. 119(8-9): p. 549-552.
    30. 邱繼洋, 添加銀之氧化物電極搭配鋯鈦錳鈮酸鉛壓電陶瓷微結構與電性之研究. 國立台灣科技大學碩士論文, 2003.
    31. Zwikker, A., Physcial properties of solid materials. Pergamon, 1954: p. 247-49.
    32. Wang, S.F., et al., Silver-palladium thick-film conductors. J. Am. Ceram. Soc., 1994. 77(12): p. 3051-72.
    33. 潘漢昌, 不同電極種類對鈦酸鍶鉛鐵電薄膜電性的影響. 國立台灣科技大學碩士論文, 1999.
    34. 汪建民, 陶瓷技術手冊(上). 1994: p. 385-390.
    35. McNulty, T.F., V.F. Janas, and A. Safari, Multilayered Multifunctional Ceramic Materials by Tape Casting. Applications of Ferroelectrics, ISAF '96., Proceedings of the Tenth IEEE International Symp., 1996: p. 755-758.
    36. Li, S., et al., Fabrication and characterization of Li1+x-yNb1-x-3yTix+4yO3 substrates using aqueous tape casting process. Ceramics International, 2009. 35(1): p. 421-426.
    37. Swartz, S.L. and T.R. Shrout, Fabrication of perovskite lead magnesium niobate. Materials Research Bulletin, 1982. 17(10): p. 1245-1250.
    38. Jiang, Q., W. Cao, and L.E. Cross, Electric fatigue in lead zirconate titanate ceramics. Journal of the American Ceramic Society, 1994. 77(1): p. 211-215.
    39. Moreno, R., The Role of Slip Additives in tape casting technology: Part 1 Solvents and Dispersants. Laboratory Report. 1992. 71: p. 1521-1531.
    40. Moreno, R., The Role of Slip Additives in tape casting technology: Part 2 Binder and Plasticizers. Laboratory Report. 1992. . 71: p. 1647-1657.
    41. Fan, H. and H.E. Kim, Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate-lead zirconate titanate. Journal of Applied Physics, 2002. 91(1): p. 317-322.
    42. SHANNON, R.D., Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. A32, 1976: p. 751-761.
    43. Mendelson, M.I., Average Grain Size in Polycrystalline Ceramic. J. Am. Ceram. Soc, 1969. 52: p. 443-446.
    44. Marvan, M., J. Erhart, and J. Fousek, Role of soft dielectric energy in poling crystals or ceramics and in domain average engineering. Applied Physics Letters, 2004. 84(5): p. 768-770.
    45. Fujimoto, K. and Y. Cho, High-speed switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO3. Applied Physics Letters, 2003. 83(25): p. 5265-5267.
    46. Lente, M.H., et al., 90 domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process. Journal of Applied Physics, 2004. 95(5): p. 2646-2653.
    47. Choi, J.J., et al., Co-firing of PZN-PZT/Ag multilayer actuator prepared by tape-casting method. Materials Research Bulletin, 2008. 43(2): p. 483-490.
    48. Kim S, J.Q., Microcracking and electric fatigue of polycrystalline ferroelectric ceramics. Smart Mater Struc,, 1996: p. 321 -325.
    49. D.C.Lupascu and J.Rodel, Review Fatigue In Bulk Lead Zirconate Titanate Actuator Materials Adv. Eng. Mater, 2005. 7(10): p. 882.
    50. D.Wang, Y. Fotinich, and G.P. Carman, Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J. Appl. Phys., 1998(83).
    51. Wang, S.F. and W. Huebner, Interaction of silver/palladium electrodes with lead- and bismuth-based electroceramics. Journal of the American Ceramic Society, 1993. 76(2): p. 474-480.
    52. Zuo, R., et al., Interfacial reaction of Ag/Pd metals with Pb-based relaxor ferroelectrics including additives. Ceramics International, 2001. 27(1): p. 85-89.
    53. Cao, J.L., et al., Structural investigations of the co-fired interface of Pb-based relaxor ferroelectrics and Ag-Pd electrode. Ceramics International, 2008. 34(8): p. 2025-2028.
    54. Tan, Q., J. Li, and D. Viehland, Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modified lead zirconate titanate. Applied Physics Letters, 1999. 75(3): p. 418-420.
    55. Noguchi, Y., et al., Defect control for large remanent polarization in bismuth titanate ferroelectrics - doping effect of higher-valent cations. Japanese journal of applied physics, 2000. 39(12 B).
    56. Guillemet-Fritsch, S., et al., Mechanical properties of nickel manganites-based ceramics used as negative temperature coefficient thermistors (NTC). Materials Research Bulletin, 2004. 39(12): p. 1957-1965.
    57. Topfer, J. and A. Feltz, Investigations on electronically conducting oxide systems XXIV[1]: Preparation and electrical properties of the spinel series CuzNiMn2-zO4. Solid State Ionics, 1993. 59(3-4): p. 249-256.
    58. Y.S.Touloukian, Thermo-physical Properties of Matter. Vol.12 Thermal Expansion-Metallic Elements and alloys, IFI, NEW York,, 1970.
    59. Suzuki, M., A. C. HOPPING CONDUCTION IN Mn-Co-Ni-Cu COMPLEX OXIDE SEMICONDUCTORS WITH SPINEL STRUCTURE. Journal of Physics and Chemistry of Solids, 1980. 41(11): p. 1253-1260.
    60. Macklen, E.D., ELECTRICAL CONDUCTIVITY AND CATION DISTRIBUTION IN NICKEL MANGANITE. Journal of Physics and Chemistry of Solids, 1986. 47(11): p. 1073-1079.
    61. Legros, R., R. Metz, and A. Rousset, Structural properties of nickel manganite NixMn3-xO4 with 0.5 <X<1. Journal of Materials Science, 1990. 25(10): p. 4410-4414.
    62. Park, K., Fabrication and electrical properties of Mn-Ni-Co-Cu-Si oxides negative temperature coefficient thermistors. Journal of the American Ceramic Society, 2005. 88(4): p. 862-866.

    QR CODE