簡易檢索 / 詳目顯示

研究生: 李佳霖
Chia-Lin Li
論文名稱: 化學濾網材料開發
Chemical Filter Material Development
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱智瑋
Chih-Wei Chiu
楊任凱
Jen-Kai Yang
邱顯堂
Hsien-Tang Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 揮發性有機化合物活性碳活性碳纖維化學濾網
外文關鍵詞: VOCs, Activated Carbon, Activated Carbon Fiber, Chemical Filters
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,隨著科技不斷發展,室內空氣品質控管越來越被重視,許多科技大廠,在各大製程中,會涉及多種有機氣體的產生,當有害氣體濃度升高時,不但會對人類健康產生負面影響,更會讓許多製程中,產生更大的不良率,進而降低生產效率。去除有害的揮發性有機化合物 (VOCs)的技術越來越受到關注,其中活性碳(Activated carbon) 是一種含碳的多孔性物質,因其具有高度發展的孔隙結構,且構造為碳形成的六環物堆積,所以具備大量微孔體積及高比表面積的特性,提供了許多吸附點位,是一種極佳的過濾材料,以去除有害物質。本研究透過酸鹼改質,提升活性碳孔隙度及表面構造,能夠有效的提升活性碳整體對有害氣體的吸附效率,並且將其組成化學濾網結構,其吸附效率比起目前商用型化學濾網有更良好的性能,接著並搭配活性碳纖維不織布(ACF),分析化學濾網組成上的差異,用於改善整體化學濾網品質及組成,達到有害氣體吸附效率的提升。最後也與產業技術結合,將化學濾網品質在更進一步的提升,並且將化學濾網製作成科技產業及車用產業所使用的大型濾網規格,成功地應用於產業上。


In recent years, indoor air quality control has become increasingly important with the continuous development of technology. Many large technology manufacturers, in the various major processes, will involve the generation of a variety of organic gases, when the concentration of harmful gases increases, not only will hurt human health, but also allows many processes, resulting in a greater rate of failure, and further reduce production efficiency. The removal of harmful volatile organic compounds (VOCs) is a technology of increasing interest. Activated carbon is a porous carbon-containing material with a highly developed pore structure and a hexacyclic accumulation of carbon, so it has a porous volume and a high surface area, which provides many adsorption sites and is an excellent filtering material to remove harmful substances. In this study, through acid-alkali modification, the porosity and surface structure of activated carbon is enhanced, which can effectively improve the overall adsorption efficiency of activated carbon for harmful gases, and the adsorption efficiency is better than that of current commercial chemical filters. Next, we analyze the difference in chemical filter composition with activated carbon fiber non-woven fabric (ACF) and use it to improve the overall chemical filter quality and composition to achieve the improvement of harmful gas adsorption efficiency. Finally, we have combined industrial technology to further improve the quality of chemical filters, and we have successfully applied chemical filters to large filters used in the technology and automotive industries.

摘要 …………………………………………………………………I Abstract II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 活性碳材料的介紹 3 2.1.1 活性碳簡介 3 2.1.2 活性碳的種類 4 2.1.3 碳化工程(Carbonization) 5 2.1.4 活化工程(Activation) 5 2.2 活性碳多孔結構的形成及表面微細結構 8 2.2.1 孔洞結構形成 8 2.2.2 活性碳表面化學結構 9 2.3 吸附現象 11 2.3.1 物理吸附 11 2.3.2 化學吸附 11 2.3.3 吸附機構 12 2.4 吸附理論 14 2.4.1 吸附平衡 14 2.4.2 等溫吸附曲線 15 2.4.3 Langmuir 等溫吸附 18 2.4.4 BET等溫吸附 19 第三章 實驗方法 22 3.1 實驗流程圖 22 3.2 實驗藥品與儀器 23 3.2.1 實驗藥品 23 3.2.2 實驗設備及儀器 25 3.2.3 實驗氣體吸附檢測系統 27 3.3 實驗方法和原理 28 3.3.1 改性活性碳的製備 28 3.3.2 不同膠粉含量之化學濾網組成 30 3.3.3 活性碳纖維層添加於化學濾網 33 3.3.4 鑑定步驟及儀器分析原理 34 第四章 結果與討論 41 4.1 改性活性碳結構差異 41 4.1.1 氮吸附等溫線 41 4.1.2 酸鹼溶液改質活性碳對其表面積及孔洞之影響 42 4.1.3 以SEM分析活性碳表面形貌結構 43 4.1.4 以X射線光電子能譜分析活性碳表面官能基團 45 4.2 改性活性碳對於氣體吸附性能分析 47 4.2.1 活性碳改性對VOCs氣體吸附性能分析 47 4.2.2 活性碳改性對鹼性氣體吸附性能分析 49 4.2.3 活性碳改性對酸性氣體吸附性能分析 51 4.3 化學濾網的組成及其吸附性能 55 4.3.1 膠粉添加量對化學濾網組成外觀差異 55 4.3.2 膠粉添加量的不同對活性碳孔洞影響 56 4.3.3 化學濾網對VOCs氣體吸附性能分析 57 4.3.4 化學濾網對鹼性氣體吸附性能分析 59 4.3.5 化學濾網對酸性氣體吸附性能分析 60 4.3.6 化學濾網與商用型化學濾網對氣體吸附性的比較 62 4.4 化學濾網添加活性碳纖維不織布層分析 64 4.4.1 活性碳纖維不織布氮等溫吸脫附曲線 64 4.4.2 活性碳纖維不織布表面形貌 65 4.4.3 以XPS分析活性碳纖維不織布表面官能基團 66 4.4.4 活性碳纖維不織布對化學濾網於VOCs吸附影響 67 4.4.5 活性碳纖維不織布對化學濾網於鹼性氣體吸附影響 70 4.4.6 活性碳纖維不織布對化學濾網於酸性氣體吸附影響 72 4.5 產學合作技術結合 74 4.5.1 技術結合之化學濾網結構 74 第五章 結論 76 第六章 參考文獻 77   圖目錄 圖2-1活性碳作為吸附劑在環境修復中的應用。 3 圖2-2孔洞大小分布圖。 9 圖2-3活性碳表面官能基團分類。 10 圖2-4活性碳吸附步驟 14 圖2-5不同類型的等溫吸附曲線 18 圖2-6 BET曲線示意圖 21 圖3-1 活性碳改性方法與分析實驗流程。 22 圖3-2 化學濾網的組成及吸附效率檢測流程。 22 圖3-3氣體吸附裝置示意圖。 28 圖3-5化學濾網組成結構示意圖。 33 圖3-6高解析度場發射掃描式電子顯微鏡儀器圖。 35 圖3-7表面積及孔徑分析儀。 36 圖3-8 X射線光電子能譜儀。 38 圖3-9氣體吸附效率檢測裝置圖。 40 圖4-1 活性碳改質前後氮吸附等溫曲線。 42 圖4-2 SEM觀察活性碳改性前後表面形貌。 44 圖4-3改性活性碳O1s光譜圖。 46 圖4-4改性活性碳N1s光譜圖。 46 圖4-5活性碳對甲苯氣體吸附性能比較。 48 圖4-6活性碳對異丙醇氣體吸附性能比較。 49 圖4-7活性碳對氨氣體吸附性能比較。 51 圖4-8活性碳對醋酸氣體吸附性能比較。 53 圖4-9改性活性碳與商用型活性碳吸附性能比較。 54 圖4-10不同膠粉添加量化學濾網外觀示意圖。 56 圖4-11不同膠粉添加量化學濾網SEM圖。 57 圖4-12 (a)化學濾網對甲苯氣體吸附性能檢測結果, (b)化學濾網膠粉添加量對甲苯氣體吸附效率的降低程度。 58 圖4-13 (a)化學濾網對異丙醇氣體吸附性能檢測結果, (b)化學濾網膠粉添加量對異丙醇氣體吸附效率的降低程度。 59 圖4-14 (a)化學濾網對氨氣體吸附性能檢測結果, (b)化學濾網膠粉添加量對氨氣體吸附效率的降低程度。 60 圖4-15 (a)化學濾網對醋酸氣體吸附性能檢測結果, (b)化學濾網膠粉添加量對醋酸氣體吸附效率的降低程度。 61 圖4-16化學濾網與商用型化學濾網比較圖。 63 圖4-17活性碳纖維不織布等溫吸-脫附曲線。 64 圖4-18活性碳纖維不織布SEM圖。 65 圖4-19活性碳纖維不織布O1s光譜圖。 66 圖4-20活性碳纖維不織布N1s光譜圖。 66 圖4-21活性碳纖維不織布示意圖。 68 圖4-22活性碳纖維不織布添加至化學濾網示意圖。 68 圖4-23不同層數的活性碳纖維不織布添加對甲苯氣體吸附效率影響。 69 圖4-24不同層數的活性碳纖維不織布添加對異丙醇氣體吸附率影響。 70 圖4-25不同層數的活性碳纖維不織布添加對氨氣體吸附效率影響。 72 圖4-26不同層數的活性碳纖維不織布添加對醋酸氣體吸附效率影響。 74 圖4-27產學技術結合製成之化學濾網結構示意圖。 75 圖4-28特定規格之工廠型化學濾網。 75   表目錄 表2-1物理吸附與化學吸附比較。 12 表3-1化學濾網組成材料表。 33 表4-1活性碳改質前後結構比較。 43 表4-2活性碳對甲苯氣體吸附率降至80%花費時間及吸附量。 48 表4-3活性碳對異丙醇氣體吸附率降至80%花費時間及吸附量。 49 表4-4活性碳對氨氣體吸附率降至80%花費時間及吸附量。 51 表4-5活性碳對醋酸氣體吸附率降至80%花費時間及吸附量。 53 表4-6改性活性碳與商用型活性碳吸附效率降至80%所花費時間。 55 表4-7化學濾網與商用型化學濾網氣體去除率下降至80%所花費時間差異。 63 表4-8活性碳纖維不織布比表面積及孔洞分析。 65 表4-9活性碳纖維不織布的添加對甲苯氣體吸附時間及吸附量影響。 69 表4-10活性碳纖維不織布添加對異丙醇氣體吸附時間及吸附量影響。 70 表4-11活性碳纖維不織布的添加對氨氣體吸附時間及吸附量影響。 72 表4-12活性碳纖維不織布的添加對醋酸氣體吸附時間及吸附量影響。 74

[1] Sun, S.; Liu, W.; Guan, W.; Zhu, S.; Jia, J.; Wu, X.; Lei, R.; Jia, T.; He, Y. Effects of Air Pollution Control Devices on Volatile Organic Compounds Reduction in Coal-fired Power Plants. Sci. Total Environ. 2021, 782, 146828.
[2] Wang, H.; Nie, L.; Li, J.; Wang, Y.; Wang, G.; Wang, J.; Hao, Z. Characterization and Assessment of Volatile Organic Compounds (VOCs) Emissions from Typical Industries. Chinese Sci Bull. 2013, 58, 724–730.
[3] Evuti, A. M. A Synopsis on Biogenic and Anthropogenic Volatile Organic Compounds Emissions: Hazards and Control. Int. J. Eng. 2013, 2, 145.
[4] Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan S.; Wu J.; Tang L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396.
[5] Zhou, K.; Ma, W.; Zeng, Z.; Ma, X.; Xu, X.; Guo, Y.; Li, H.; Li, L. Experimental and DFT Study on The Adsorption of VOCs on Activated Carbon/Metal Oxides Composites. Chem. Eng. J. 2019, 372, 1122–1133.
[6] Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153.
[7] Li, Y. Z.; Wang, G. D.; Shi, W. J.; Hou, L.; Wang, Y. Y.; Zhu, Z. Efficient C2H N Hydrocarbons and VOC Adsorption and Separation in An MOF With Lewis Basic and Acidic Decorated Active Sites. ACS Appl. Mater. Interfaces. 2020, 12, 41785–41793.
[8] Zou, W.; Gao, B.; Ok, Y. S.; Dong, L. Integrated Adsorption and Photocatalytic Degradation of Volatile Organic Compounds (VOCs) Using Carbon-Based Nanocomposites: A Critical Review. Chemosphere. 2019, 218, 845–859.
[9] Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption Materials for Volatile Organic Compounds (VOCs) and The Key Factors for VOCs Adsorption Process: A Review. Sep. Purif. Rev. 2020, 235, 116213.
[10] Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang S.; Li, H.; Huang, H. An Overview on Engineering The Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204.
[11] Wang, H.; Zhu, T.; Fan, X.; Na, H. Adsorption and Desorption of Small Molecule Volatile Organic Compounds Over Carbide-Derived Carbon. Carbon. 2014, 67, 712–720.
[12] Vikrant, K.; Kim, K. H.; Szulejko, J. E.; Pandey, S. K.; Singh, R. S.; Giri, B. S.; Lee, S. H. Bio-filters for the Treatment of VOCs and Odors-A Review. Asian J. Atmospheric Environ. 2017, 11, 139-152.
[13] Gallego, E.; Roca, F. J.; Perales, J. F.; Guardino, X. Experimental Evaluation of VOC Removal Efficiency of A Coconut Shell Activated Carbon Filter for Indoor Air Quality Enhancement. Build Environ. 2013, 67, 14–25.
[14] Zhang, X.; Gao, B.; Creamer, A. E.; Cao, C.; Li, Y. Adsorption of VOCs onto Engineered Carbon Materials: A Review. J. Hazard. Mater. 2017, 338, 102–123
[15] Mohammad-Khah, A.; Ansari, R. Activated Charcoal: Preparation, Characterization And Applications: A Review Article. J. Chem. Technol. 2009, 1, 859–864.
[16] Liu, J.; Liu, Y.; Peng, J.; Liu, Z.; Jiang, Y.; Meng, M.; Zhang W.; Ni, L. Preparation of High Surface Area Oxidized Activated Carbon From Peanut Shell and Application for The Removal of Organic Pollutants and Heavy Metal Ions. Water Air Soil Poll. 2018, 229, 1–17.
[17] Li, L.; Quinlivan, P. A.; Knappe, D. R. Effects of Activated Carbon Surface Chemistry and Pore Structure on The Adsorption of Organic Contaminants from Aqueous Solution. Carbon. 2002, 40, 2085–2100.
[18] Lu, S.; Huang, X.; Tang, M.; Peng, Y.; Wang, S.; Makwarimba, C. P. Synthesis of N-Doped Hierarchical Porous Carbon with Excellent Toluene Adsorption Properties and its Activation Mechanism. Environ. Pollut. 2021, 284, 117113.
[19] Marsh, H.; Reinoso, F. R. Activated Carbon. 2006, Elsevier.
[20] Heidarinejad, Z.; Dehghani, M. H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpaa, M. Methods For Preparation and Activation of Activated Carbon: A Review. Environ Chem Lett. 2020, 18, 393–415.
[21] Suzuki, M. Activated Carbon Fiber: Fundamentals and Applications. Carbon. 1994, 32, 577–586.
[22] Daud, W. M. A. W.; Ali, W. S. W.; Sulaiman, M. Z. The Effects of Carbonization Temperature on Pore Development in Palm-Shell-Based Activated Carbon. Carbon, 2000, 38, 1925–1932.
[23] Li, W.; Yang, K.; Peng, J.; Zhang, L.; Guo, S.; Xia, H. Effects Of Carbonization Temperatures on Characteristics of Porosity in Coconut Shell Chars and Activated Carbons Derived from Carbonized Coconut Shell Chars. Ind Crops Prod. 2008, 28, 190–198.
[24] Heidarinejad, Z.; Dehghani, M. H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpaa, M. Methods For Preparation and Activation of Activated Carbon: A Review. Environ Chem Lett. 2020, 18, 393–415.
[25] Hayashi, J. I.; Kazehaya, A.; Muroyama, K.; Watkinson, A. P. Preparation of Activated Carbon from Lignin by Chemical Activation. Carbon. 2000, 38, 1873–1878.
[26] Su, C. I.; Peng, C. C.; Lu, C. H.; Wang, C. M.; Shih, W. C. Effect of Activator on Characteristics of Carbon Fiber Absorbents. Polym-Plast Technol. 2012, 51, 766–771.
[27] Sevilla, M.; Mokaya, R. Energy Storage Applications of Activated Carbons: Supercapacitors and Hydrogen Storage. Energy Environ. Sci. 2014, 7, 1250–1280.
[28] Sinha, P.; Banerjee, S.; Kar, K. K. Characteristics of Activated Carbon. Handbook of Nanocomposite Supercapacitor Materials I. 2020, 125–154.
[29] Thommes, M.; Cychosz, K. A. Physical Adsorption Characterization of Nanoporous Materials: Progress and Challenges. Adsorption 2014, 20, 233–250.
[30] Thommes, M. Physical Adsorption Characterization of Ordered and Amorphous Mesoporous Materials. Arch. Mater. Sci. Eng. 2004, 317–364.
[31] De Boer, J. H. Adsorption Phenomena. Adv. Catal. 1956, 17–161.
[32] Low, M. J. D. Kinetics of Chemisorption of Gases on Solids. Chem. Rev. 1960, 60, 267–312.
[33] Jonas, L. A. Reaction Steps in Gas Sorption by Impregnated Carbon. Carbon. 1978, 16, 115–119
[34] Ruthven, Douglas M. Fundamentals of Adsorption Equilibrium and Kinetics in Microporous Solids. Adsorption and diffusion. Springer, Berlin, Heidelberg, 2006. 1–43.
[35] Goss, K. U. The Air/Surface Adsorption Equilibrium of Organic Compounds Under Ambient Conditions. Crit Rev Environ Sci Technol. 2004, 34, 339–389.
[36] Al-Ghouti, M. A.; Daana, D. A. Guidelines for The Use And Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383.
[37] Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere, 2020, 258, 127279.
[38] Foo, K. Y.; Hameed, B. H. Insights into The Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10.
[39] Lowell, S.; Shields, J. E. Powder Surface Area and Porosity (Vol. 2). Springerplus. 1991.
[40] Dollimore, D.; Spooner, P.; Turner, A. J. S. T. The BET Method of Analysis of Gas Adsorption Data and Its Relevance to The Calculation of Surface Areas. Surf. Coat. Technol1976, 4, 121–160.
[41] Schneider, P. Adsorption Isotherms of Microporous-Mesoporous Solids Revisited. APPL CATAL A-GEN. 1995, 129, 157–165.
[42] Zielinski, J. M.; Kettle, L. Physical Characterization: Surface Area and Porosity. London: Intertek2013, 723, 724.
[43] Czepirski, L.; Balys, M. R.; Komorowska-Czepirska, E. Some Generalization of Langmuir Adsorption Isotherm. Internet J. Chem. 2000, 3, 1099–8292.
[44] Bardestani, R.; Patience, G. S.; Kaliaguine, S. Experimental Methods in Chemical Engineering: Specific Surface Area and Pore Size Distribution Measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791.
[45] Baek, J.; Lee, H. M.; Roh, J. S.; Lee, H. S.; Kang, H. S.; Kim, B. J. Studies on Preparation and Applications of Polymeric Precursor-Based Activated Hard Carbons: I. Activation Mechanism and Microstructure Analyses. Microporous Mesoporous Mater. 2016, 219, 258–264.
[46] Kim, K. J.; Kang, C. S.; You, Y. J.; Chung, M. C.; Woo, M. W.; Jeong, W. J.; Park N. C.; Ahn, H. G. Adsorption–Desorption Characteristics of VOCs Over Impregnated Activated Carbons. Catal. Today. 2006, 111, 223–228.
[47] Guo, Q.; Liu, Y. Z.; Qi, G. S.; Jiao, W. Z. Behavior of Activated Carbons by Compound Modification in High Gravity for Toluene Adsorption. Adsorp Sci Technol. 2018, 36, 1018–1030.
[48] Su, C.; Guo, Y.; Chen, H.; Zou, J.; Zeng, Z.; Li, L. VOCs Adsorption of Resin-Based Activated Carbon and Bamboo Char: Porous Characterization and Nitrogen-Doped Effect. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124983.
[49] Li, D.; Chen, W.; Wu, J.; Jia, C. Q.; Jiang, X. The Preparation of Waste Biomass-Derived N-Doped Carbons and Their Application in Acid Gas Removal: Focus on N Functional Groups. J. Mater. Chem. A. 2020, 8, 24977–24995.
[50] Li, L.; Liu, S.; Liu, J. Surface Modification of Coconut Shell Based Activated Carbon for The Improvement of Hydrophobic VOC Removal. J. Hazard. Mater. 2011, 192, 683–690.
[51] Huang, C. C.; Li, H. S.; Chen, C. H. Effect of Surface Acidic Oxides of Activated Carbon on Adsorption of Ammonia. J. Hazard. Mater. 2008, 159, 523–527.
[52] Qu, Z.; Sun, F.; Liu, X.; Gao, J.; Qie, Z.; Zhao, G. The Effect of Nitrogen-Containing Functional Groups on SO2 Adsorption on Carbon Surface: Enhanced Physical Adsorption Interactions. Surf Sci. 2018, 677, 78–82.
[53] Mochizuki, T.; Kubota, M.; Matsuda, H.; Camacho, L. F. E. Adsorption Behaviors of Ammonia and Hydrogen Sulfide on Activated Carbon Prepared from Petroleum Coke by KOH Chemical Activation. Fuel Process. Technol. 2016, 144, 164–169.
[54] Sun, F.; Gao, J.; Liu, X.; Yang, Y.; Wu, S. Controllable Nitrogen Introduction Into Porous Carbon with Porosity Retaining for Investigating Nitrogen Doping Effect on SO2 Adsorption. Chem. Eng. J. 2016, 290, 116–124.

無法下載圖示 全文公開日期 2025/08/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE