簡易檢索 / 詳目顯示

研究生: 何秉憲
Ping-Hsien - Ho
論文名稱: 光學尺連續製造系統之設計研究
The design of optical encoder by continuing fabrication system
指導教授: 張以全
Peter I-Tsyuen Chang
口試委員: 郭俊良
Chun-Liang Kuo
鍾俊輝
Chun-Hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 60
中文關鍵詞: 光學尺捲對卷製程壓電致動器雷射雕刻
外文關鍵詞: optical encoder, roll-to-roll process, piezoelectric actuator, laser ablation
相關次數: 點閱:275下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光柵刻痕(grating)是精密量測工具\ -\ 光學尺(optical encoder)的關鍵零件,由一透明或反射的材料上,定間距刻上極細微之固定刻痕,但光柵的刻痕因為搭配使用光源之波長,為微米等級線寬,使其製作非常困難,尤其不易製造出超過50公分總長的連續柵欄形式,其價格也隨長度增加而上揚,屬於附加價值產品。本研發探討使用兩種製造方法克服長光學尺的製造技術,其一是搭配卷對卷自動化生產機台(Roll-to-Roll processer)及光學尺模具,利用高解析度之光學顯微鏡,再次微米精度下,確認模具與已成形光柵之相對位置,再利用壓電致動器(piezoelectric actuator)驅動模具橫移(translation)及轉動(rotation),透過這些一系列精準對位,達成連續壓印的光柵刻痕製造;另一種則是由雷射雕刻機進行一整排光柵的加工,搭配高解析度之光學顯微鏡及自製機構模組,在每一次加工中重新定位連續製造出接續的光柵刻痕。此創新機構及操作系統,成功克服當前光柵刻痕長度製作限制,將來若能夠整合成自動化系統,同時也能夠提升製作效率,相信可以取代成本昂貴的半導體製程方法。


    material which processed gratings of the same pitch and periodic,
    but the fabrication of optical encoder is much difficult becuse of its micron grade line width, especially for over 50 centermeter lenth, the longer the optical encoder, the higher the price, it's a kind of high value-added product.In this reserch, we try to use two different method producing longer optical endcoder, one is using Roll-to-Roll processer and the grating mold, with high resalution optical microscope, using piezoelectric actuator drive translation and rotation of the mold after making sure the relative position between mold and grating-completed in sub-micro accuracy, it can accomplish continuing imprint the fabrcation of gratings by a seris of precision positioning,the other is using laser ablation device,
    to fabrication countinuing gratings, it will repositioning in every processing with high reslution optical microscope and self-produced mechanism. We can successfully overcome the limitation of grating of working space in this brand new system, if it can develop into automation and upgrade the efficient, the brand new method can replace the traditional semi-conductor process in the future.

    論文摘要...................................... I Abstract....................................... II 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI 1介紹....................................... 1 1.1研究背景................................. 1 1.1.1光學尺............................... 1 1.1.2 奈米轉印術............................ 3 1.1.3 雷射特性與原理.......................... 6 1.1.4壓電材料............................. 8 1.2目的與動機................................ 10 1.3文獻回顧................................. 11 1.3.1 奈米轉印術............................ 11 1.3.2 雷射加工技術........................... 14 2機構設計..................................... 20 2.1滾壓機構設計............................... 20 2.2雷射雕刻機構設計............................ 24 3實驗流程、儀器介紹與壓電材料........................ 28 3.1實驗流程................................. 28 3.1.1 奈米轉印實驗流程........................ 28 3.1.2 雷射雕刻實驗流程........................ 29 3.2設備介紹................................. 30 3.2.1 光纖雷射設備........................... 30 3.2.2電動平台............................. 31 3.2.3 精密平面磨床(ESG-818)..................... 32 3.3量測儀器................................. 33 3.3.1 光學顯微鏡............................ 33 3.3.2 影像感測器............................ 34 3.3.3 表面干涉儀............................ 35 3.3.4 雷射位移計............................ 36 3.4壓電材料................................. 38 4結果與討論................................... 48 4.1 SKD11工件................................ 48 4.2光學顯微鏡................................ 49 4.3表面干涉儀................................ 53 5結論與未來展望................................. 57 5.1結論.................................... 57 5.1.1 奈米轉印術............................ 57 5.1.2雷射雕刻............................. 57 5.2未來展望................................. 58 5.2.1 奈米轉印術............................ 58 5.2.2雷射雕刻............................. 58 參考文獻...................................... 59

    [1] E. Gabrielyan, “The basics of line moir ́e patterns and optical speedup,” arXiv
    preprint physics/0703098, 2007.
    [2] 高偉嘉, “以直接轉印技術製作線性光學尺,” Master’s thesis, NTUST, 2015.
    [3] 蔡宏營, “奈米轉印技術介紹,” 工研院機械所 中華民國力學學會會訊, no. 104, 2003.
    [4] N. Kooy, K. Mohamed, L. T. Pin, and O. S. Guan, “A review of roll-to-roll nanoimprint lithography,” Nanoscale research letters, vol. 9, no. 1, p. 1, 2014.
    [5] 林三寶, 雷射原理與應用. 全華圖書股份有限公司, 2009.
    [6] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Science & Technology B, vol. 14, no. 6, pp. 4129–4133, 1996.
    [7] C. Perret, C. Gourgon, F. Lazzarino, J. Tallal, S. Landis, and R. Pelzer, “Char- acterization of 8-in. wafers printed by nanoimprint lithography,” Microelectronic Engineering, vol. 73, pp. 172–177, 2004.
    [8] H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” Journal of Vacuum Science & Technology B, vol. 16, no. 6, pp. 3926–3928, 1998.
    [9] S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Advanced materials, vol. 20, no. 11, pp. 2044–2049, 2008.
    [10] L. J. Guo and S. H. Ahn, “Roll to roll nanoimprint lithography,” Sept. 27 2011. US Patent 8,027,086.
    [11] S.-W. Youn, M. Ogiwara, H. Goto, M. Takahashi, and R. Maeda, “Prototype development of a roller imprint system and its application to large area polymer replication for a microstructured optical device,” journal of materials processing technology, vol. 202, no. 1, pp. 76–85, 2008.
    59
    [12] P. Mannion, J. Magee, E. Coyne, and G. M. O’Connor, “Ablation thresholds in ultrafast laser micromachining of common metals in air,” pp. 470–478, 2003.
    [13] 丁勝懋, 雷射工程導論. 中央圖書出版社, 1995.
    [14] 許育豪, “飛秒雷射製作金屬玻璃微奈米轉印精密模具應用分析,” Master’s
    thesis, 國立台灣科技大學, 2011.
    [15] Y. Kathuria, “Laser microprocessing of stent for medical therapy,” in Mi- cromechatronics and Human Science, 1998. MHS’98. Proceedings of the 1998 International Symposium on, pp. 111–114, IEEE, 1998.
    [16] H.-y. Meng, J.-h. Liao, B.-g. Guan, Q.-m. ZHANG, and Y.-h. ZHOU, “Fiber laser cutting technology on coronary artery stent,” Chinese Journal of Lasers, vol. 34, no. 5, p. 733, 2007.
    [17] K. Kleine, B. Whitney, and K. Watkins, “Use of fiber lasers for micro cutting applications in the medical device industry,” in 21st International Congress on Applications of Lasers and Electro-Optics, Scottsdale, Citeseer, 2002.
    [18] M. Baumeister, K. Dickmann, and T. Hoult, “Fiber laser micro-cutting of stain- less steel sheets,” Applied Physics A, vol. 85, no. 2, pp. 121–124, 2006.
    [19] 杜維剛, “單晶藍寶石基板平面研光製程之研光盤分析與開發研究,” Master’s thesis, NTUST, 2011.

    QR CODE