簡易檢索 / 詳目顯示

研究生: 楊盛强
Sheng-Chiang Yang
論文名稱: 固溶奈米金屬氧化物之合成工程及其應用
Synthetically Engineered Solid-Solution of Nano-sized Metal Oxides and Their Applications
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
吳紀聖
Chi-Sheng Wu
李志甫
Jyh-Fu Lee
杜景順
Jing-Shan Do
林昇佃
Shawn D. Lin
蘇威年
Wei-Nien Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 179
中文關鍵詞: 固溶材料蒸氣重組笑氣表面氧化氧空缺銅鐵銅鈰釤鈰氧化物
外文關鍵詞: Solid solution, steam reforming, engineering method, surface oxidation by N2O, oxygen vacancies and metal oxide of CuFe, CuCe and SmCe
相關次數: 點閱:420下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態材料用傳統的方式直接加熱法(>1000 °C)可以方便合成出各種固溶材料,但因比表面積過低而粒徑過大(> 1μm)所以其應用有所被限制。本論文介紹以形貌工程來增加固溶材料之比表面積,分散工程是由固溶材料來製造高分散度的觸媒材料,氧空缺工程來增加固溶材料的氧空缺,用這些工程方法來擴展固態材料的應用。
    本文第一部分探討用形貌工程來製備銅鐵金屬氧化物,其具有條狀的形貌、晶粒大小約9nm、BET比表面積為126 m2/g的固溶材料。只要小於750 °C就可由CuO及Fe2O3相轉變成CuFe2O4 spinel結構 (文獻值 > 1000 °C)。再經由分散工程生成晶粒大小約3.6nm的奈米銅。銅鐵金屬氧化物在較少的氧化銅重量比及相同的甲醇蒸氣重組條件下,其甲醇轉化率高於商用觸媒G66B.
    第二部份探討用相同的形貌工程來製備銅鈰金屬氧化物,其具有條狀的形貌、晶粒大小約9nm、BET比表面積為105 m2/g的固溶觸媒。再經由分散工程生成粒徑大小約2nm(粒徑大小由笑氣表面氧化法測出)的奈米銅。對照組觸媒是利用溶膠凝膠法製備的Cu-SBA15觸媒。經由臨場X光吸收光譜於氫氣熱還原後,得到有相近Cu-Cu配位數(銅鈰金屬為8.8、Cu-SBA15為8.5),並發現銅鈰金屬還原態之奈米銅顆粒有比較飽滿的電子。這種電子遷移現象有助於提高甲醇蒸氣重組的轉化率。
    第三部份探討用氧空缺工程來製備具有高氧空缺的釤鈰金屬氧化物,其具有條狀的形貌、晶粒大小約9nm、BET比表面積為118 m2/g的固溶材料。並證實其氧空缺在50°C下有吸附二氧化碳的能力、高於300 °C可將二氧化碳轉換成一氧化碳。
    這一些工程(engineering)的方法可以普遍製造奈米級的固溶材料(< 10nm 晶粒大小),這種奈米尺寸的固溶材料將會有更有趣的新應用被發掘。最後於附錄介紹因應蒸氣重組而發明流體分離技術之專利。


    Solid solution material has long attracted the interest of scientists due to its versatile applications. General preparative method is to heat particles directly (usually > 1000 °C) in micro scale. The loss of surface area by sintering limits the applications of solid solution materials. Several engineering methods are proposed and studied: morphology engineering is used to increase the surface area; dispersion engineering is used to manufacture materials with high catalytic activity and oxygen vacancy engineering is used to create more oxygen vacancies. It is hoped that these engineering methods can expand the solid solution material’s applications.
    By means of the morphology engineering, rod-like Cu-Fe solid-oxide material with nano-size ~ 9 nm (crystal size) and 126 m2/g BET surface area has been synthesized. CuO and Fe2O3 phases change to spinel CuFe2O4 structure at 750 °C, whereas a calcination temperature above 1000 °C is usually required in the common preparative method (> 1μm crystal size and < 0.3 m2/g). Cu nanoparticles (~3.6 nm crystal size) are generated from the rod-like solid solution by the dispersion engineering. This catalyst clearly outperforms commercial G66B in conversion for the steam reforming of methanol.
    Rod-like CuCe solid oxides are synthesized by the same engineering method. The obtained solid oxides have about 9 nm crystal size and 109 m2/g BET surface area. The dispersion engineering helps to generate Cu nanoparticles (~2 nm by N2O method). The sample was benchmarked with Cu-SBA-15 of the same composition by sol-gel method. In XAS, both samples have similar coordination number and are confirmed with no oxidation state Cu after reduction. It is found that there is evidence of electronic transfer from CeO2 to Cu in rod-like CuCe, where higher electron occupancy of Cu is beneficial high SRM conversion.
    The oxygen vacancy engineering is developed to create more oxygen vacancies in ceria oxide. The rod-like SmCe solid oxides have nano-size ~ 9 nm (crystal size) and 118 m2/g BET surface area. This material absorbs CO2 at 50 °C and is able to convert CO2 to CO above 300 °C.
    These engineering methods significantly improve the general preparative methods to produce nanoparticles and expand the horizons of solid solution materials and their applications. Finally, the patent of fluid separation technology is invented in appendix.

    摘要 I Abstract II List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 The solid state oxide material 1 1.2 General preparative method 2 1.3 Motivation 3 1.4 Scope of this thesis 4 Chapter 2 Literature Review 5 2.1 Solid state metal oxide for catalyst application. 5 2.1.1 Oxidation Reactions 6 2.1.2 Pollution abatement 7 2.1.3 Hydrogenation Reactions 8 2.1.4 Photocatalysis 8 2.2 Issues in the synthesis of Solid solution metal oxide 9 2.3 Hard template ~ mesorporous silica 11 2.4 Morphology engineering of metal oxide 18 2.5 Dispersion engineering of metal oxide 21 2.6 Oxygen vacancy engineering of ceria oxide 22 Chapter 3 Chemicals, Experiments, and Characterization of Catalyst 24 3.1 Chemicals and gas 24 3.1.1 Chemicals 24 3.1.2 gas 25 3.2 Catalyst synthesis 25 3.2.1 Morphology engineering 25 3.2.1.1 SBA-15 synthesis 25 3.2.1.2 Morphology engineering for single crystal metal oxide synthesis 26 3.2.1.3 Morphology engineering for rod like solid solution metal oxide synthesis 27 3.2.1.4 The SBA-15 is removed 28 3.2.2 Dispersion engineering 29 3.2.3 Oxygen engineering 30 3.3 Gas analysis 30 3.3.1 Gas Chromatography (GC) 30 3.3.2 Steam reforming of methanol condition 32 3.3.3 Reaction apparatus 34 3.3.4 Separation method by one detector 35 3.3.5 Mass Spectrometer 37 3.4 Characterization 37 3.4.1 X-ray Absorption Spectroscopy (XAS) 37 3.4.2 X-ray diffraction analysis (XRD) 38 3.4.2.1 In house XRD 38 3.4.2.2 in-situ XRD 38 3.4.2.3 JCPDS card 38 3.4.2.4 Estimation crystallite size 39 3.4.3 Transmission electron microscopy analysis (TEM) 39 3.4.4 Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) 39 3.4.5 BET surface area 40 3.4.6 Temperature program reduction (TPR) 40 3.4.7 Temperature program desorption (TPD) by N2O method 40 3.4.7.1 Cu dispersion 40 3.4.7.2 Copper metal surface area (SCu) and the average particle size (φav) 40 3.4.8 The EDS of SEM 41 3.5 Density functional theory (DFT) 42 Chapter 4 Preparation of nano-sized Cu from a rod-like CuFe2O4 : suitable for high performance catalytic applications 43 4.1 Introduction 43 4.2 Experiment 45 4.2.1 Catalyst preparation 45 4.2.2 Catalytic test 48 4.3 Results and discussion 48 4.3.1 Catalytic morphology 48 4.3.2 Materials characterizations 51 4.3.3 TPR analysis 53 4.3.4 Materials characterizations after hydrogen reduction 55 4.3.5 In situ XRD analysis 57 4.3.6 XANES and EXAFS analysis 59 4.3.7 BET surface area measurement 64 4.3.8 SRM test 65 4.4 Conclusions 67 Chapter 5 Preparation of highly dispersed catalytic Cu from rod-like CuO-CeO2 mixed metal oxide: suitable for applications in high performance methanol steam reforming 69 5.1 Introduction 69 5.2 Experiment 70 5.2.1 Catalyst preparation 70 5.2.2 Catalytic test 73 5.3 Results and discussion 74 5.3.1 Morphology of catalyst 74 5.3.2 Materials characterizations 77 5.3.3 TPR analysis 80 5.3.4 Cu dispersion analysis 82 5.3.5 Reaction test 84 5.4 Conclusion 86 Chapter 6 Electron transfer between the support and reduced metal catalyst for SRM reaction. 88 6.1 Introduction 88 6.2 Experiment 88 6.2.1 Catalyst preparation 88 6.2.2 Catalytic test 89 6.3 Results and discussion 90 6.3.1 XANES and EXAFS analysis 90 6.3.1.1 For Cu K-edge. 90 6.3.1.2 For Ce L3-edge. 95 6.3.2 in-situ XRD 97 6.3.3 Electronic States of Cu by Density functional theory (DFT) 98 6.3.4 Reaction test 100 6.4 Conclusion 101 Chapter 7 Oxygen vacancy engineering of cerium oxides for CO2 capture and reduction 103 7.1 Introduction 103 7.2 Experiment and discussion 104 7.2.1 Catalyst preparation 104 7.2.2 Sample morphology 106 7.2.3 Materials characterizations 107 7.2.4 CO2 capture test 108 7.2.5 Material regeneration test 110 7.2.6 CO2 convert to CO test 112 7.3 Conclusion 115 Chapter 8 Summaries 117 References 119 Appendix: Patent for “Fluid Separation Method and Fluid Separation Apparatus” 137 A-1 First Embodiment 137 A-2 Second Embodiment 148 A-3 Third Embodiment 155

    1. Hayashi A, Minami K, Tatsumisago M. High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries. Journal of Non-Crystalline Solids 2009,355:1919-1923.
    2. Ghosh A, Wang CS, Kofinas P. Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number. Journal of the Electrochemical Society 2010,157:A846-A849.
    3. Kotobuki M, Munakata H, Kanamura K, Sato Y, Yoshida T. Compatibility of Li(7)La(3)Zr(2)O(12) Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode. Journal of the Electrochemical Society 2010,157:A1076-A1079.
    4. Leung K, Budzien JL. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. Physical Chemistry Chemical Physics 2010,12:6583-6586.
    5. Sakuda A, Hayashi A, Tatsumisago M. Intefacial Observation between LiCoO(2) Electrode and Li(2)S-P(2)S(5) Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy. Chemistry of Materials 2010,22:949-956.
    6. Ayawanna J, Wattanasiriwech D, Wattanasiriwech S, Aungkavattana P. Effects of cobalt metal addition on sintering and ionic conductivity of Sm(Y)-doped ceria solid electrolyte for SOFC. Solid State Ionics 2009,180:1388-1394.
    7. Hansch R, Chowdhury MRR, Menzler NH. Screen printing of sol-gel-derived electrolytes for solid oxide fuel cell (SOFC) application. Ceramics International 2009,35:803-811.
    8. Rambabu B, Ghosh S, Jena H. Novel wet-chemical synthesis and characterization of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9 as solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Journal of Materials Science 2006,41:7530-7536.
    9. Smirnova O, Kumada N, Yonesaki Y, Kinomura N. A new solid electrolyte to fill the gap between low temperatures and high temperatures SOFC materials? Electrochemistry Communications 2008,10:485-487.
    10. Zhu B, Liu XR, Zhu ZG, Ljungberg R. Solid oxide fuel cell (SOFC) using industrial grade mixed rare-earth oxide electrolytes. International Journal of Hydrogen Energy 2008,33:3385-3392.
    11. Dziubaniuk M, Pasierb P, Rekas M. Modification of Lanthanum Oxychloride Solid Electrolyte for Convential Potentiometric Chlorine Gas Sensor. Functional Materials Letters 2011,4:171-174.
    12. Gathright W, Jensen M, Lewis D. Phase field model of chemical reactions with an example of a solid electrolyte gas sensor. Electrochemistry Communications 2011,13:520-523.
    13. Inaba Y, Tamura S, Imanaka N. New type of sulfur dioxide gas sensor based on trivalent Al3+ ion conducting solid electrolyte. Solid State Ionics 2008,179:1625-1627.
    14. Kida T, Harano H, Minami T, Kishi S, Morinaga N, Yamazoe N, et al. Control of Electrode Reactions in a Mixed-Potential-Type Gas Sensor Based on a BiCuVOx Solid Electrolyte. Journal of Physical Chemistry C 2010,114:15141-15148.
    15. Nagai T, Tamura S, Imanaka N. A new solid electrolyte type ammonia gas sensor with praseodymium ammonium sulfate based auxiliary sensing electrode. Sensor Letters 2008,6:454-457.
    16. Filippov V, Vasil'ev A, Terent'ev A, Morits V. Interaction of hydrogen with a metal-oxide-semiconductor structure containing an additional solid-electrolyte layer. Technical Physics Letters 1999,25:729-730.
    17. Vasiliev AA, Filippov VI, Dobrovolsky YA, Pisareva AV, Moritz W, Palombari R. Hydrogen sensors based on metal-insulator-semiconductor structures with a layer of a proton-conducting solid electrolyte. Russian Journal of Electrochemistry 2007,43:561-569.
    18. Lee DK, Kogel L, Ebbinghaus SG, Valov I, Wiemhoefer HD, Lerch M, et al. Defect chemistry of the cage compound, Ca(12)Al(14)O(33-delta)-understanding the route from a solid electrolyte to a semiconductor and electride. Physical Chemistry Chemical Physics 2009,11:3105-3114.
    19. Kato H, Kudo A. Highly efficient decomposition of pure water into H-2 and O-2 over NaTaO3 photocatalysts. Catalysis Letters 1999,58:153-155.
    20. Wang JS, Yin S, Komatsu M, Zhang QW, Saito F, Sato T. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. Journal of Photochemistry and Photobiology a-Chemistry 2004,165:149-156.
    21. Sun C, Huang LH, Liu YL. Preparation and performance of Na2Ta2O6 photocatalyst. Chemical Journal of Chinese Universities-Chinese 2006,27:1749-1751.
    22. Omeiri S, Gabes Y, Bouguelia A, Trari M. Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions. Journal of Electroanalytical Chemistry 2008,614:31-40.
    23. Torres-Martinez LM, Gomez R, Vazquez-Cuchillo O, Juarez-Ramirez I, Cruz-Lopez A, Alejandre-Sandoval FJ. Enhanced photocatalytic water splitting hydrogen production on RuO(2)/La NaTaO(3) prepared by sol-gel method. Catalysis Communications 2010,12:268-272.
    24. Pfutzner H, Mulasalihovic E, Yamaguchi H, Sabic D, Shilyashki G, Hofbauer F. Rotational Magnetization in Transformer Cores-A Review. Ieee Transactions on Magnetics 2011,47:4523-4533.
    25. Song O, Zhang ZJ. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. Journal of the American Chemical Society 2004,126:6164-6168.
    26. Recham N, Armand M, Janot R, Masquelier C, Dupont L, Tarascon JM. Abstracts on the 14th conference of GDCh Division for Solid State Chemistry and Material Research: "Solids with Storage Function (Energy, Information, Matter)". Zeitschrift Fur Anorganische Und Allgemeine Chemie 2008,634:2005-2012.
    27. Zhang GQ, Lu JW, Fraser CL. Mechanochromic Luminescence Quenching: Force-Enhanced Singlet-to-Triplet Intersystem Crossing for Iodide-Substituted Difluoroboron-Dibenzoylmethane-Dodecane in the Solid State. Inorganic Chemistry 2010,49:10747-10749.
    28. Oster L, Druzhyna S, Horowitz YS. Optically stimulated luminescence in LiF:Mg,Ti: Application to solid-state radiation dosimetry. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 2011,648:261-265.
    29. Sharma AK, Dhoble SJ, Bhatt J, Peshwe DR. Luminescence properties of Eu(2+)-activated Ca(0.13)Sr(0.87)Al(2)Si(2)O(8): A bluish green phosphor for solid state lighting. Transactions of the Indian Institute of Metals 2011,64:213-215.
    30. Chen R, Song FL, Chen DH, Peng YH. Improvement of the luminescence properties of CaTiO(3):Pr obtained by modified solid-state reaction. Powder Technology 2009,194:252-255.
    31. Qin F, Zheng YD, Yu Y, Zheng CB, Liang HJ, Zhang ZG, et al. Ultraviolet upconversion luminescence in Er(3+)-doped Y(2)O(3) excited by 532 nm CW compact solid-state laser. Journal of Luminescence 2009,129:1137-1139.
    32. Dashkevich VI, Orlovich VA. Ring solid-state Raman laser at 1538 nm. Laser Physics Letters 2011,8:661-667.
    33. Wallace J. SOLID-STATE ILLUMINATION Four-color laser source produces high-quality white light. Laser Focus World 2011,47:17-18.
    34. Fu XH, Che Y, Li YL. All-solid-state Nd:Gd(0.18)Y(0.82)VO(4)-LBO green laser at 532 nm. Laser Physics 2011,21:1343-1346.
    35. Severino F, Brito JL, Laine J, Fierro JLG, López Agudo A. Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts. Journal of Catalysis 1998,177:82-95.
    36. Ciambelli P, Cimino S, De Rossi S, Lisi L, Minelli G, Porta P, et al. AFeO3 (A = La, Nd, Sm) and LaFe1-xMgxO3 perovskites as methane combustion and CO oxidation catalysts: Structural, redox and catalytic properties. Applied Catalysis B: Environmental 2001,29:239-250.
    37. Fortunato G, Oswald HR, Reller A. Spinel-type oxide catalysts for low temperature CO oxidation generated by use of an ultrasonic aerosol pyrolysis process. Journal of Materials Chemistry 2001,11:905-911.
    38. Krylova IV. Exoemission and catalytic activity of oxides with perovskite and spinel structures in the oxidation of CO and hydrocarbons. Russian Chemical Bulletin 2002,51:46-53.
    39. Bueno-López A, Krishna K, Makkee M, Moulijn JA. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. Journal of Catalysis 2005,230:237-248.
    40. West AR. Solid State Chemistry and Its Applications. 1980.
    41. Tejuca LG, Fierro JL, Tascon JM. Structure and Reactivity of Perovskite-Type Oxides. Advances in Catalysis 1989,36:237-328
    42. Balasubramanian M, Natesan R, Rajendran P. J. Sci. Ind. Res. 1984,34:500-510.
    43. Nakamura T, Misono M, Yoneda Y. Catalytic Properties of Perovskite-type Mixed Oxides, La1−xSrxCoO3. Bulletin of the Chemical Society of Japan 1982,55:394-399.
    44. Nitadori T, Misono M. Catalytic properties of La1-xAxFeO3 (A= Sr,Ce) and La1-xCexCoO3. Journal of Catalysis 1985,93:459-466.
    45. Kremenić G, Nieto JML, D. JM, J. T, G. L. Chemisorption and catalysis on LaMO3 oxides. J. Chem. Soc., Faraday Trans. 1985,81:939-949.
    46. Pirogova GN, Panich NM, Korosteleva RI, Voronin YV, Popova NN. Catalytic properties of chromites with a spinel structure in the oxidation of CO and hydrocarbons and reduction of nitrogen oxides. Russian Chemical Bulletin 2001,50:2377-2380.
    47. Faungnawakij K, Kikuchi R, Eguchi K. X-ray photoelectron spectroscopy characterization of copper-iron spinel as a catalyst for steam reforming of oxygenated hydrocarbon. Scripta Materialia 2009,60:655-658.
    48. Zahir MH, Katayama S, Awano M. Hydrothermal synthesis of ZnO-Ga2O3-Al2O3 spinel for NO reduction by hydrocarbon under oxygen-rich conditions. Catalysis Letters 2004,93:145-150.
    49. Zawadzki M, Walerczyk W, Lopez-Suarez FE, Illan-Gomez MJ, Bueno-Lopez A. CoAl(2)O(4) spinel catalyst for soot combustion with NO(x)/O(2). Catalysis Communications 2011,12:1238-1241.
    50. Jiang Z, Zhang WH, Shangguan WF, Wu XJ, Teraokag Y. Adsorption of NO Molecule on Spinel-Type CuFe(2)O(4) Surface: A First-Principles Study. Journal of Physical Chemistry C 2011,115:13035-13040.
    51. Xu XL, Chen WK, Chen ZH, Li JQ, Li Y. Interaction of CO and NO with the spinel CuCr2O4 (100) surface: A DFT study. International Journal of Quantum Chemistry 2008,108:1435-1443.
    52. Fierro G, Dragone R, Ferraris G. NO and N2O decomposition and their reduction by hydrocarbons over Fe-Zn manganite spinels. Applied Catalysis B-Environmental 2008,78:183-191.
    53. Armor JN. Environmental catalysis. Applied Catalysis B: Environmental 1992,1:221-256
    54. Armor JN. Catalytic removal of nitrogen oxides: where are the opportunities? Catalysis Today 1995,26:99-105.
    55. Iwamoto M. Heterogeneous catalysis for removal of NO in excess oxygen. Progress in 1994. Catalysis Today 1996,29:29-35.
    56. Spassova I, Mehandjiev D. Mechanism of NO conversion over a coprecipitated CuO-MnOx spinel-like catalyst. Reaction Kinetics and Catalysis Letters 2000,69:231-237.
    57. Stambolova I, Konstantinov K, Khristova M, Peshev P. NO sensitivity of spinel type Zn2SnO4 spray deposited films. Physica Status Solidi a-Applied Research 1998,167:R11-R12.
    58. Shangguan WF, Teraoka Y, Kagawa S. Kinetics of soot-O-2, soot-NO and soot-O-2-NO reactions over spinel-type CuFe2O4 catalyst. Applied Catalysis B-Environmental 1997,12:237-247.
    59. Vannice MA. The Catalytic Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen. Catalysis Reviews 1976,14:153-191.
    60. Rofer-DePoorter CK. A comprehensive mechanism for the Fischer-Tropsch synthesis. Chemical Reviews 1981,81:447-474.
    61. Weatherbee GD, Bartholomew CH. Hydrogenation of CO2 on group VIII metals: IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru. Journal of Catalysis 1984,87:352-362.
    62. Yokoi Y, Uchida H. Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: Correlation between cluster model calculations and temperature-programmed desorption experiments. Catalysis Today 1998,42:167-174.
    63. Sheffer GR, King TS. Potassium's promotional effect of unsupported copper catalysts for methanol synthesis. Journal of Catalysis 1989,115:376-387.
    64. Brown Bourzutschky JA, Homs N, Bell AT. Conversion of synthesis gas over LaMn1−xCUxO3+λ perovskites and related copper catalysts. Journal of Catalysis 1990,124:52-72.
    65. Rojas ML, Fierro JLG, Tejuca LG, Bell AT. Preparation and characterization of LaMn1−xCUxO3+λ perovskite oxides. Journal of Catalysis 1990,124:41-51.
    66. Rojas ML, Fierro JLG. Synthesis and characterization of LaTi1−xCuxO3 compounds. Journal of Solid State Chemistry 1990,89:299-307.
    67. K K. Methanol Synthesis. In: Advances in Catalysis. Edited by D.D. Eley HP, Paul BW: Academic Press; 1982. pp. 243-313.
    68. Erdöhelyi A, Pásztor M, Solymosi F. Catalytic hydrogenation of CO2 over supported palladium. Journal of Catalysis 1986,98:166-177.
    69. Diagne C, Idriss H, Pepin I, Hindermann JP, Kiennemann A. Temperature-programmed desorption studies on Pd/CeO2 after methanol and formic acid adsorption and carbon monoxide—hydrogen reaction. Applied Catalysis 1989,50:43-53.
    70. Huang H, Zhang WK, Gan YP, Zhang L, Wang C. Photo-electrochemical lithium insertion characteristics of carbon nanotubes modified with SrTiO3 photocatalyst (vol 19, pg 428, 2006). Chinese Journal of Chemical Physics 2007,20:108-108.
    71. Huang H, Zhang WK, Gan YP, Zhang L, Wang C. Photo-electrochemical lithium insertion characteristics of carbon nanotubes modified with SrTiO3 photocatalyst. Chinese Journal of Chemical Physics 2006,19:428-432.
    72. Chang CH, Shen YH. Synthesis and characterizations of chromium doped SrTiO3 photocatalyst. Materials Letters 2006,60:129-132.
    73. Zhang WK, Gan YP, Huang H, Zhang B, Wang GT, Tu JP. Photoelectrochemical characteristics of AB(5)-type hydrogen storage alloy modified with SrTiO3 photocatalyst. Transactions of Nonferrous Metals Society of China 2005,15:733-737.
    74. Wang JS, Yin S, Komatsu M, Sato T. Lanthanum and nitrogen co-doped SrTiO3 powders as visible light sensitive photocatalyst. Journal of the European Ceramic Society 2005,25:3207-3212.
    75. Kang HW, Park SB. Water photolysis by NaTaO(3)-C composite prepared by spray pyrolysis. Advanced Powder Technology 2010,21:106-110.
    76. Kato H, Asakura K, Kudo A. Highly efficient water splitting into H-2 and O-2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society 2003,125:3082-3089.
    77. Kato H, Kudo A. Water splitting into H-2 and O-2 on alkali tantalate photocatalysts ATaO(3) (A = Li, Na, and K). Journal of Physical Chemistry B 2001,105:4285-4292.
    78. Kudo A, Kato H. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chemical Physics Letters 2000,331:373-377.
    79. Younsi M, Aider A, Bouguelia A, Trari M. Visible light-induced hydrogen over CuFeO2 viaS(2)O(3)(2-) oxidation. Solar Energy 2005,78:574-580.
    80. Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DS. J. Am. Chem. Soc. 1976,98:277-283.
    81. Baek SW, Kim JH, Bae J. Characteristics of ABO3 and A2BO4 A{double bond, short}Sm, Sr; B{double bond, short}Co, Fe, Ni) samarium oxide system as cathode materials for intermediate temperature-operating solid oxide fuel cell. Solid State Ionics 2008,179:1570-1574.
    82. Farhadi S, Rashidi N. Preparation and characterization of pure single-phase BiFeO3 nanoparticles through thermal decomposition of the heteronuclear Bi[Fe(CN)6]•5H2O complex. Polyhedron 2010,29:2959-2965.
    83. Wang G, Gao XP, Shen PW. Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries. Journal of Power Sources 2009,192:719-723.
    84. Hu CC, Teng H. Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods. Applied Catalysis A: General 2007,331:44-50.
    85. Kameoka S, Tanabe T, Tsai AP. Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4. Applied Catalysis a-General 2010,375:163-171.
    86. Yuan X, Zhuo SP, Xing W, Cui HY, Dai XD, Liu XM, et al. Aqueous dye adsorption on ordered mesoporous carbons. J. Colloid Interface Sci. 2007,310:83-89.
    87. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992,359:710-712.
    88. Vartuli JC, Shih SS, Kresge CT. Potential applications for M41S type mesoporous molecular sieves. Micropor. Mesopor. Mater. 1998,117:13-21.
    89. Israelachvili JN, Marcelja, S., Horn, R.G. Physical principles of membrane organization. Quarterly Reviews of Biophysics 1980,13:121-200.
    90. Mitchell DJ, Ninham, B.W. Micelles, vesicles and microemulsions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1981,77:601-629.
    91. Tanford C. Macromolecules. Protein Science 1994,3:857-861.
    92. Evans JE, Springer, K.W., Zhang, J.Z. Femtosecond studies of interparticle electron transfer in a coupled CdS-TiO2 colloidal system. The Journal of Chemical Physics 1994,101:6222-6225.
    93. Huo Q, Margolese DI, Stucky GD. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chemistry of Materials 1996,8:1147-1160.
    94. Sakamoto Y, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky G, et al. Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 2000,408:449-453.
    95. Garcia-Bennett AE, Miyasaka K, Terasaki O, Che S. Structural Solution of Mesocaged Material AMS-8. Chemistry of Materials 2004,16:3597-3605.
    96. Yang H, Coombs N, Sokolov I, Ozin GA. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature 1996,381:589-592.
    97. Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA. Synthesis of oriented films of mesoporous silica on mica. Nature 1996,379:703-705.
    98. Lin HP, Mou CY. Structural and morphological control of cationic
    surfactant-templated mesoporous silica. Acc. Chem. Res 2001,35:927-935.
    99. Vinu A, Srinivasu P, Miyahara M, Ariga K. Preparation and Catalytic Performances of Ultralarge-Pore TiSBA-15 Mesoporous Molecular Sieves with Very High Ti Content. J. Phys. Chem. B 2006,110:801-806.
    100. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998,279:548-552.
    101. Cheng CF, He HY, Zhou WZ, Klinowski J. Crystal morphology supports the liquid-crystal formation mechanism for the mesoporous molecular-sieve MCM-41. Chem. Phys. Letters 1995,244:117-120.
    102. Cheng CF, Luan ZH, Klinowski J. The role of surfactant micelles in the synthesis of the mesoporous molecular-sieve MCM-41. Langmuir 1995,11:2815-2819.
    103. Wan Y, Zhao. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chemical Reviews 2007,107:2821-2860.
    104. Zhang F, Yan, Yang H, YanMeng Y, Yu C, Tu B, et al. Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15. The Journal of Physical Chemistry B 2005,109:8723-8732.
    105. Shah P, Ramaswamy V. Thermal stability of mesoporous SBA-15 and Sn-SBA-15 molecular sieves: An in situ HTXRD study. Microporous and Mesoporous Materials 2008,114:270-280.
    106. Itoh T, Ishii R, Matsuura S, Mizuguchi J, Hamakawa S, Hanaoka T, et al. Enhancement in thermal stability and resistance to denaturants of lipase encapsulated in mesoporous silica with alkyltrimethylammonium (CTAB). Colloids and Surfaces B-Biointerfaces 2010,75:478-482.
    107. Lee HS, Yoo JW. Preparation of In-Situ Pt Nanoparticles into Frameworks of Mesoporous Silica for Improving Thermal Stability. Journal of Nanoscience and Nanotechnology 2011,11:7365-7368.
    108. Hu J, Gu A, Liang G, Zhuo D, Yuan L. Preparation and properties of mesoporous silica/bismaleimide/diallylbisphenol composites with improved thermal stability, mechanical and dielectric properties. Express Polymer Letters 2011,5:555-568.
    109. Li FF, Jiang YS, Xia MS, Sun MM, Xue B, Ren XH. A novel mesoporous silica-clay composite and its thermal and hydrothermal stabilities. Journal of Porous Materials 2010,17:217-223.
    110. Tian BZ, Liu XY, Yang HF, Xie SH, Yu CZ, Tu B, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Advanced Materials 2003,15:1370-1374.
    111. Yue W, Zhou WZ. Synthesis of porous single crystals of metal oxides via a solid-liquid route. Chemistry of Materials 2007,19:2359-2363.
    112. Zheng MB, Cao J, Liao ST, Liu JS, Chen HQ, Zhao Y, et al. Preparation of Mesoporous Co3O4 Nanoparticles via Solid-Liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors. Journal of Physical Chemistry C 2009,113:3887-3894.
    113. Wang H, Gao L, Wang WM, Fu ZY, Sekino T, Lee SW, et al. Preparation of functional metal nanoparticles embedded mullite composite powders by solid solution reduction. Journal of the Ceramic Society of Japan 2009,117:452-456.
    114. Gallego GS, Batiot-Dupeyrat C, Barrault J, Mondragon F. Hydrogen and carbon nanotubes production by methane decomposition over Ni degrees/La2O3 obtained from LaNiO3-delta perovskite. Revista Facultad De Ingenieria-Universidad De Antioquia 2008:7-19.
    115. Batiot-Dupeyrat C, Valderrama G, Meneses A, Martinez F, Barrault J, Tatibouet JM. Pulse study of CO2 reforming of methane over LaNiO3. Applied Catalysis a-General 2003,248:143-151.
    116. Sanchez MG, Gazquez JL. Oxygen vacancy model in strong metal-support interaction. Journal of Catalysis 1987,104:120-135.
    117. Ratkovic S, Vujicic D, Kiss E, Boskovic G, Geszti O. Different degrees of weak metal-support interaction in Fe-(Ni)/Al(2)O(3) catalyst governing activity and selectivity in carbon nanotubes' production using ethylene. Materials Chemistry and Physics 2011,129:398-405.
    118. Wang R, Li YH, Shi RH, Yang MM. Effect of metal-support interaction on the catalytic performance of Ni/Al(2)O(3) for selective hydrogenation of isoprene. Journal of Molecular Catalysis a-Chemical 2011,344:122-127.
    119. Zimowska M, Wagner JB, Dziedzic J, Camra J, Borzeccka-Prokop B, Najbar M. Some aspects of metal-support strong interactions in Rh/Al2O3 catalyst under oxidising and reducing conditions. Chemical Physics Letters 2006,417:137-142.
    120. van den Berg MWE, De Toni A, Bandyopadhyay M, Gies H, Grunert W. CO oxidation with Au/TiO(2) aggregates encapsulated in the mesopores of MCM-48: Model studies on activation, deactivation and metal-support interaction. Applied Catalysis a-General 2011,391:268-280.
    121. Bonanni S, Ait-Mansour K, Brune H, Harbich W. Overcoming the Strong Metal-Support Interaction State: CO Oxidation on Tio(2)(110)-Supported Pt Nanoclusters. Acs Catalysis 2011,1:385-389.
    122. Ivanova AS, Slavinskaya EM, Gulyaev RV, Zaikovskii VI, Stonkus OA, Danilova IG, et al. Metal-support interactions in Pt/Al(2)O(3) and Pd/Al(2)O(3) catalysts for CO oxidation. Applied Catalysis B-Environmental 2010,97:57-71.
    123. Katsaounis A, Nikopoulou Z, Verykios XE, Vayenas CG. Comparative isotope-aided investigation of electrochemical promotion and metal-support interactions - 2. CO oxidation by O-18(2) on electropromoted Pt films deposited on YSZ and on nanodispersed Pt/YSZ catalysts. Journal of Catalysis 2004,226:197-209.
    124. Zhao HY, Bennici S, Cai JX, Shen JY, Auroux A. Influence of the metal oxide support on the surface and catalytic properties of sulfated vanadia catalysts for selective oxidation of methanol. Journal of Catalysis 2010,274:259-272.
    125. Smith MW, Berry DA, Shekhawat D, Haynes DJ, Spivey JJ. Partial oxidation of liquid hydrocarbons in the presence of oxygen-conducting supports: Effect of catalyst layer deposition. Fuel 2010,89:1193-1201.
    126. Wang L-C, Liu Q, Chen M, Liu Y-M, Cao Y, He, et al. Structural Evolution and Catalytic Properties of Nanostructured Cu/ZrO2 Catalysts Prepared by Oxalate Gel-Coprecipitation Technique. The Journal of Physical Chemistry C 2007,111:16549-16557.
    127. Chen CS, Lin JH, Lai TW, Li BH. Active sites on Cu/SiO2 prepared using the atomic layer epitaxy technique for a low-temperature water-gas shift reaction. Journal of Catalysis 2009,263:155-166.
    128. Overbury SH, Mullins DR, Kundakovic L. Enhancement of dissociation by metal-support interaction: reaction of NO on Rh supported by ceria films of controlled oxidation state. Surface Science 2001,470:243-254.
    129. Ahmed F, Alam MK, Muira R, Suzuki A, Tsuboi H, Hatakeyama N, et al. Adsorption and dissociation of molecular hydrogen on Pt/CeO(2) catalyst in the hydrogen spillover process: A quantum chemical molecular dynamics study. Applied Surface Science 2010,256:7643-7652.
    130. Hapeshi E, Theocharis CR. Preparation and Characterization of a Cerium(IV)-incorporated Manganese Oxide OMS-2. Effect of Cerium(IV) Template on Octahedral Molecular Sieves of Manganese Oxide and Characterization of Manganese Oxide Molecular Sieves with Cerium(IV) as Dopant. Adsorption Science & Technology 2008,26:789-801.
    131. Patil S, Seal S, Guo Y, Schulte A, Norwood J. Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles. Applied Physics Letters 2006,88:111-113.
    132. Chen PL, Chen IW. Grain growth in CeO2: Dopant effects, defect mechanism, and solute drag. Journal of the American Ceramic Society 1996,79:1793-1800.
    133. Krishna K, Bueno-Lopez A, Makkee M, Moulijn JA. Potential rare-earth modified CeO2 catalysts for soot oxidation Part III. Effect of dopant loading and calcination temperature on catalytic activity with O-2 and NO+O-2. Applied Catalysis B-Environmental 2007,75:210-220.
    134. Papavasiliou J, Avgouropoulos G, Ioannides T. Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming. Applied Catalysis B-Environmental 2007,69:226-234.
    135. Wang CM, Engelhard MH, Azad S, Saraf LV, McCready DE, Shutthanandan V, et al. Distribution of oxygen vacancies and gadolinium dopants in ZrO2-CeO2 multi-layer films grown on alpha-Al2O3. Solid State Ionics 2006,177:1299-1306.
    136. Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ionics 1996,83:1-16.
    137. Petunchi JO, Nicastro JL, Lombardo EA. Ethylene hydrogenation over LaCoO3 perovskite. Journal of the Chemical Society, Chemical Communications 1980:467-468.
    138. Staudt T, Lykhach Y, Tsud N, Skála T, Prince KC, Matolín V, et al. Ceria reoxidation by CO2: A model study. Journal of Catalysis 2010,275:181-185.
    139. Yue, Zhou. Synthesis of Porous Single Crystals of Metal Oxides via a Solid−Liquid Route. Chemistry of Materials 2007,19:2359-2363.
    140. http://www.vici.com/.
    141. Evans JW, Wainwright MS, Bridgewater AJ, Young DJ. On the determination of copper surface area by reaction with nitrous oxide. Applied Catalysis A: General 1983,7:75-82.
    142. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, Condens. Matter 1999,59:1758-1755.
    143. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996,54:11169-11186.
    144. Kresse G, Hafner J. Ab initio molecular dyanmics for liquid metals. Phys. Rev. B: Condens. Matter 1993,47:558–561.
    145. Giaquinta DM, Zur Loye HC. Structural predictions in the ABO3 phase diagram. Chemistry of Materials 1994,6:365-372.
    146. Grimes RW, Anderson AB, Heuer AH. Predictions of cation distributions in AB2O4 spinels from normalized ion energies. Journal of the American Chemical Society 1989,111:1-6.
    147. Rogers DB, Shannon RD, Prewitt CT, Gillson JL. Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure. Inorganic Chemistry 1971,10:723-727.
    148. Shannon RD, Rogers DB, Prewitt CT. Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorganic Chemistry 1971,10:713-718.
    149. Kameoka S, Tanabe T, Tsai AP. Spinel CuFe2O4: a precursor for copper catalyst with high thermal stability and activity. Catalysis Letters 2005,100:89-93.
    150. Li CC, Lin RJ, Lin HP, Lin YK, Lin YG, Chang CC, et al. Catalytic performance of plate-type Cu/Fe nanocomposites on ZnO nanorods for oxidative steam reforming of methanol. Chemical Communications 2011,47:1473-1475.
    151. Tanabe T, Kameoka S, Tsai AP. A novel catalyst fabricated from Al-Cu-Fe quasicrystal for steam reforming of methanol. Catalysis Today 2006,111:153-157.
    152. Faungnawakij K, Fukunaga T, Kikuchi R, Eguchi K. Deactivation and regeneration behaviors of copper spinel-alumina composite catalysts in steam reforming of dimethyl ether. Journal of Catalysis 2008,256:37-44.
    153. Faungnawakij K, Tanaka Y, Shimoda N, Fukunaga T, Kawashima S, Kikuchi R, et al. Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production. Applied Catalysis A: General 2006,304:40-48.
    154. Faungnawakij K, Tanaka Y, Shimoda N, Fukunaga T, Kikuchi R, Eguchi K. Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina. Applied Catalysis B: Environmental 2007,74:144-151.
    155. Estrella M, Barrio L, Zhou G, Wang X, Wang Q, Wen W, et al. In situ characterization of CuFe2O4 and Cu/Fe3O4 water-gas shift catalysts. Journal of Physical Chemistry C 2009,113:14411-14417.
    156. Rodriguez JA, Hanson JC, Wen W, Wang X, Brito JL, Martínez-Arias A, et al. In-situ characterization of water-gas shift catalysts using time-resolved X-ray diffraction. Catalysis Today 2009,145:188-194.
    157. Rodriguez JA, Liu P, Wang X, Wen W, Hanson J, Hrbek J, et al. Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides. Catalysis Today 2009,143:45-50.
    158. Severino F, Brito J, Carías O, Laine J. Comparative study of alumina-supported CuO and CuCr2O4 as catalysts for CO oxidation. Journal of Catalysis 1986,102:172-179.
    159. Ischenkol EV, Yatsimirsky VK, Dyachenko AG, Borysenko MV, Prilutskiy EV, Konguroval IV. Cu-co-fe oxide catalysts supported on carbon nanotubes in the reaction of CO oxidation. Polish Journal of Chemistry 2008,82:291-297.
    160. Shangguan WF, Teraoka Y, Kagawa S. Kinetics of soot-O2, soot-NO and soot-O2-NO reactions over spinel-type CuFe2O4 catalyst. Applied Catalysis B: Environmental 1997,12:237-247.
    161. Shangguan WF, Teraoka Y, Kagawa S. Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NO(x) and diesel soot particulate. Applied Catalysis B: Environmental 1998,16:149-154.
    162. Teraoka Y, Shangguan WF, Kagawa S. Reaction mechanism of simultaneous catalytic removal of NOx and diesel soot particulates. Research on Chemical Intermediates 2000,26:201-206.
    163. Shangguan WF, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides. Applied Catalysis B: Environmental 1996,8:217-227.
    164. Faungnawakij K, Shimoda N, Fukunaga T, Kikuchi R, Eguchi K. Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether. Applied Catalysis B-Environmental 2009,92:341-350.
    165. Sun ZP, Liu L, Ha DZ, Pan WY. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sensors and Actuators B-Chemical 2007,125:144-148.
    166. Porta P, Cimino S, De Rossi S, Faticanti M, Minelli G, Pettiti I. AFeO3 (A = La, Nd, Sm) and LaFe1-xMgxO3perovskites: Structural and redox properties. Materials Chemistry and Physics 2001,71:165-173.
    167. Eguchi K, Shimoda N, Faungnawakij K, Matsui T, Kikuchi R, Kawashima S. Transmission electron microscopic observation on reduction process of copper-iron spinel catalyst for steam reforming of dimethyl ether. Applied Catalysis B-Environmental 2008,80:156-167.
    168. Eun YC, In-Sik N, Young GK, Jong SC, Jae SL, Nomura M. An X-ray absorption study of copper ion exchanged H-mordenite for selective catalytic reduction of NO by ammonia. Journal of Molecular Catalysis 1991,69:247-258.
    169. Kau LS, Hodgson KO, Solomon EI. X-ray absorption edge and EXAFS study of the copper sites in ZnO methanol synthesis catalysts. Journal of the American Chemical Society 1989,111:7103-7109.
    170. Hwang BJ, Tsai YW, Sarma LS, Tseng YL, Liu DG, Lee JF. Genesis of bimetallic Pt-Cu clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy. Journal of Physical Chemistry B 2004,108:20427-20434.
    171. Nashner MS, Frenkel AI, Adler DL, Shapley JR, Nuzzo RG. Structural Characterization of Carbon-Supported Platinum−Ruthenium Nanoparticles from the Molecular Cluster Precursor PtRu5C(CO)16. Journal of the American Chemical Society 1997,119:7760-7771.
    172. Frenkel AI, Hills CW, Nuzzo RG. A view from the inside: Complexity in the atomic scale ordering of supported metal nanoparticles. Journal of Physical Chemistry B 2001,105:12689-12703.
    173. Sinfelt JH, Via GH, Meitzner G, Lytle FW. Catalyst Characterization Science: American Chemical Society; 1985.
    174. Sinfelt JH, Via GH, Meitzner G, Lytle FW. Structure of Bimetallic Catalysts. In: Catalyst Characterization Science: American Chemical Society; 1985. pp. 253-266.
    175. Yahiro H, Murawaki K, Saiki K, Yamamoto T, Yamaura H. Study on the supported Cu-based catalysts for the low-temperature water-gas shift reaction. Catalysis Today 2007,126:436-440.
    176. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M. In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cu−CeO2 Catalysts:  Complex Interaction between Metallic Copper and Oxygen Vacancies of Ceria. The Journal of Physical Chemistry B 2005,110:428-434.
    177. Jacobs G, Graham UM, Chenu E, Patterson PM, Dozier A, Davis BH. Low-temperature water–gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design. Journal of Catalysis 2005,229:499-512.
    178. Zhang C, Michaelides A, King DA, Jenkins SJ. Anchoring Sites for Initial Au Nucleation on CeO2{111}: O Vacancy versus Ce Vacancy. The Journal of Physical Chemistry C 2009,113:6411-6417.
    179. Naya K, Ishikawa R, Fukui K-i. Oxygen-Vacancy-Stabilized Positively Charged Au Nanoparticles on CeO2(111) Studied by Reflection−Absorption Infrared Spectroscopy. The Journal of Physical Chemistry C 2009,113:10726-10730.
    180. Ammal SC, Heyden A. Correction to “Nature of Ptn/TiO2(110) Interface under Water-Gas Shift Reaction Conditions: A Constrained ab Initio Thermodynamics Study”. The Journal of Physical Chemistry C 2011,234:3321-3329.
    181. Camellone MF, Fabris S. Reaction Mechanisms for the CO Oxidation on Au/CeO2 Catalysts: Activity of Substitutional Au3+/Au+ Cations and Deactivation of Supported Au+ Adatoms. Journal of the American Chemical Society 2009,131:10473-10483.
    182. Goguet A, Meunier FC, Tibiletti D, Breen JP, Burch R. Spectrokinetic Investigation of Reverse Water-Gas-Shift Reaction Intermediates over a Pt/CeO2 Catalyst. The Journal of Physical Chemistry B 2004,108:20240-20246.
    183. Rodríguez JA, Evans J, Graciani Js, Park J-B, Liu P, Hrbek J, et al. High Water−Gas Shift Activity in TiO2(110) Supported Cu and Au Nanoparticles: Role of the Oxide and Metal Particle Size. The Journal of Physical Chemistry C 2009,113:7364-7370.
    184. Li Y, Fu Q, Flytzani-Stephanopoulos M. Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Applied Catalysis B: Environmental 2000,27:179-191.
    185. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M. Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction. Science 2007,318:1757-1760.
    186. Avgouropoulos G, Papavasiliou J, Ioannides T. PROX reaction over CuO-CeO2 catalyst with reformate gas containing methanol. Catalysis Communications 2008,9:1656-1660.
    187. Gomez-Cortes A, Marquez Y, Arenas-Alatorre J, Diaz G. Selective CO oxidation in excess of H-2 over high-surface area CuO/CeO2 catalysts. Catalysis Today 2008,133:743-749.
    188. Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation (vol 246, pg 52, 2007). Journal of Catalysis 2007,247:127-127.
    189. Luo MF, Ma JM, Lu JQ, Song YP, Wang YJ. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis 2007,246:52-59.
    190. Luo MF, Song YP, Lu JQ, Wang XY, Pu ZY. Identification of CuO species in high surface area CuO-CeO2 catalysts and their catalytic activities for CO oxidation. Journal of Physical Chemistry C 2007,111:12686-12692.
    191. Moreno M, Baronetti GT, Laborde MA, Marino FJ. Kinetics of preferential CO oxidation in H-2 excess (COPROX) over CuO/CeO2 catalysts. International Journal of Hydrogen Energy 2008,33:3538-3542.
    192. Zheng XC, Zhang XL, Wang SP, Wang XY, Wu SH. Effect of addition of base on ceria and reactivity of CuO/CeO2 catalysts for low-temperature CO oxidation. Journal of Natural Gas Chemistry 2007,16:179-185.
    193. Bera P, Priolkar KR, Sarode PR, Hegde MS, Emura S, Kumashiro R, et al. Structural Investigation of Combustion Synthesized Cu/CeO2 Catalysts by EXAFS and Other Physical Techniques:  Formation of a Ce1-xCuxO2-δ Solid Solution. Chemistry of Materials 2002,14:3591-3601.
    194. Jiang XY, Lou LP, Ding GH, Chen YX, Zheng XM. The active species and catalytic properties of CuO/CeO2-TiO2 catalysts for NO plus CO reaction. Journal of Materials Science 2004,39:4663-4667.
    195. Wu XD, Liang Q, Weng D, Lu ZX. The catalytic activity of CuO-CeO2 mixed oxides for diesel soot oxidation with a NO/O-2 mixture. Catalysis Communications 2007,8:2110-2114.
    196. Zhu H, Shen M, Gao F, Kong Y, Dong L, Chen Y, et al. A study of CuO/CeO2/Al-Zr-O in "NO plus CO". Catalysis Communications 2004,5:453-456.
    197. Auprêtre F, Descorme C, Duprez D. Bio-ethanol catalytic steam reforming over supported metal catalysts. Catalysis Communications 2002,3:263-267.
    198. Oguchi H, Nishiguchi T, Matsumoto T, Kanai H, Utani K, Matsumura Y, et al. Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts. Applied Catalysis A: General 2005,281:69-73.
    199. Matsumoto T, Nishiguchi T, Kanai H, Utani K, Matsumura Y, Imamura S. Steam reforming of dimethyl ether over H-mordenite-Cu/CeO2 catalysts. Applied Catalysis A: General 2004,276:267-273.
    200. Shan W, Shen W, Li C. Structural Characteristics and Redox Behaviors of Ce1-xCuxOy Solid Solutions. Chemistry of Materials 2003,15:4761-4767.
    201. Fu M, Yue X, Ye D, Ouyang J, Huang B, Wu J, et al. Soot oxidation via CuO doped CeO2 catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis. Catalysis Today 2010,153:125-132.
    202. Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D. Nature and surface redox properties of copper(II)-promoted cerium(IV) oxide CO-oxidation catalysts. Chemistry of Materials 2000,12:3715-3725.
    203. Yang SC, Su WN, Lin SD, Rick J, Cheng JH, Liu JY, et al. Preparation of nano-sized Cu from a rod-like CuFe2O4: Suitable for high performance catalytic applications. Applied Catalysis B: Environmental 2011,106:650-656.
    204. Yang ZX, He BL, Lu ZS, Hermansson K. Physisorbed, Chemisorbed, and Oxidized CO on Highly Active Cu-CeO2(111). Journal of Physical Chemistry C 2010,114:4486-4494.
    205. Kryachko ES, Tishchenko O, Nguyen MT. Mechanism of the oxidation reaction of Cu with N2O via nonadiabatic electron transfer. International Journal of Quantum Chemistry 2002,89:329-340.
    206. Sato S, Takahashi R, Sodesawa T, Yuma K, Obata Y. Distinction between surface and bulk oxidation of Cu through N2O decomposition. Journal of Catalysis 2000,196:195-199.
    207. Wu ZL, Li MJ, Howe J, Meyer HM, Overbury SH. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O-2 Adsorption. Langmuir 2010,26:16595-16606.
    208. Wang XQ, Rodriguez JA, Hanson JC, Gamarra D, Martinez-Arias A, Fernandez-Garcia M. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: Complex interaction between metallic copper and oxygen vacancies of ceria. Journal of Physical Chemistry B 2006,110:428-434.
    209. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B. Quantum origin of the oxygen storage capability of ceria. Physical Review Letters 2002,89:1666011-1666014.
    210. Yang Z, Xie L, Ma D, Wang G. Origin of the High Activity of the Ceria-Supported Copper Catalyst for H2O Dissociation. J. Phys. Chem. C 2011,115:6730-6740.
    211. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, et al. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 2008,20:14-27.
    212. Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today 2006,115:2-32.
    213. Vaidhyanathan R, Iremonger SS, Shimizu GKH, Boyd PG, Alavi S, Woo TK. Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid. Science 2010,330:650-653.
    214. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, et al. An overview of CO2 capture technologies. Energy and Environmental Science 2010,3:1645-1669.
    215. Diamantonis NI, Economou IG. Evaluation of Statistical Associating Fluid Theory (SAFT) and Perturbed Chain-SAFT Equations of State for the Calculation of Thermodynamic Derivative Properties of Fluids Related to Carbon Capture and Sequestration. Energy & Fuels 2011,25:3334-3343.
    216. Giovanni E, Richards KR. Determinants of the costs of carbon capture and sequestration for expanding electricity generation capacity. Energy Policy 2010,38:6026-6035.
    217. Mantripragada HC, Rubin ES. Techno-economic evaluation of coal-to-liquids (CTL) plants with carbon capture and sequestration. Energy Policy 2011,39:2808-2816.
    218. Nagasawa H, Abe Y, Iizuka A, Yamasaki A, Yanagisawa Y. Application of bipolar membrane electrodialysis in carbon dioxide capture and sequestration. Abstracts of Papers of the American Chemical Society 2011,241:654-656.
    219. Randolph JB, Saar MO. Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophysical Research Letters 2011,38:981-984.
    220. Wong-Parodi G, Dowlatabadi H, McDaniels T, Ray I. Influencing Attitudes toward Carbon Capture and Sequestration: A Social Marketing Approach. Environmental Science & Technology 2011,45:6743-6751.
    221. Guzman J, Carrettin S, Corma A. Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society 2005,127:3286-3287.
    222. Campbell CT, Peden CHF. Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005,309:713-714.
    223. Widmann D, Leppelt R, Behm RJ. Activation of a Au/CeO2 catalyst for the CO oxidation reaction by surface oxygen removal/oxygen vacancy formation. Journal of Catalysis 2007,251:437-442.
    224. Li HF, Zhang N, Chen P, Luo MF, Lu JQ. High surface area Au/CeO(2) catalysts for low temperature formaldehyde oxidation. Applied Catalysis B-Environmental 2011,110:279-285.
    225. Deshpande S, Patil S, Kuchibhatla SV, Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied Physics Letters 2005,87:1-3.
    226. Boronat M, Corma A. Generation of defects on oxide supports by doping with metals and their role in oxygen activation. Catalysis Today 2011,169:52-59.
    227. Yun D, Oaks AJ, Chen WY, Kirk MA, Rest J, Insopov ZZ, et al. Kr and Xe irradiations in lanthanum (La) doped ceria: Study at the high dose regime. Journal of Nuclear Materials 2011,418:80-86.
    228. Mori T, Drennan J, Lee JH, Li JG, Ikegami T. Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems. Solid State Ionics 2002,154:461-466.
    229. Torrens R, Sammes NM, Tompsett G. Characterization of Pr- and Sm-doped Ce0.8Gd0.2O2-delta. Journal of Electroceramics 2004,13:683-689.
    230. Yashima M, Takizawa T. Atomic Displacement Parameters of Ceria Doped with Rare-Earth Oxide Ce0.8R0.2O1.9 (R = La, Nd, Sm, Gd, Y, and Yb) and Correlation with Oxide-Ion Conductivity. The Journal of Physical Chemistry C 2010,114:2385-2392.
    231. Balducci G, Kašpar J, Fornasiero P, Graziani M, Islam MS, Gale JD. Computer simulation studies of bulk reduction and oxygen migration in CeO2-ZrO2 solid solutions. Journal of Physical Chemistry B 1997,101:1750-1753.
    232. Gómez-Sainero LM, Baker RT, Vizcaíno AJ, Francis SM, Calles JA, Metcalfe IS, et al. Steam Reforming of Methanol with Sm2O3−CeO2-Supported Palladium Catalysts: Influence of the Thermal Treatments of Catalyst and Support. Industrial & Engineering Chemistry Research 2009,48:8364-8372.
    233. Mori T, Drennan J, Lee JH, Li JG, Ikegami T. Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems. Solid State Ionics 2002,154-155:461-466.

    QR CODE