Basic Search / Detailed Display

Author: 史聯宏
Lian-Hong Shi
Thesis Title: 應用於智能家居且基於工作量證明的去中心化設計
Design of the Proof­-of­-Work-­Based Decentralization for the Smart Home
Advisor: 馮輝文
Hui­-Wen Ferng
Committee: 鄭傑
張宏慶
查士朝
Degree: 碩士
Master
Department: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2021
Graduation Academic Year: 109
Language: 中文
Pages: 47
Keywords (in Chinese): 區塊鏈物聯網智能家居工作量證明去中心化
Keywords (in other languages): Blockchain, Internet of Things, Smart Home, Proof of Work, Decentralization
Reference times: Clicks: 505Downloads: 4
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 共識協議(Consensus Protocol)是區塊鏈(Blockchain)的核心,它決定了區塊鏈的運作方式。而去中心化(Decentralization)是區塊鏈能發展至今的重要因素之一,也是區塊鏈最顯著的特徵之一。隨著智能家居(Smart Home)時代的到來,區塊鏈隨著物聯網 (Internet of Things) 已經開始進入我們的生活。但是,現今各類不同的共識算法的基礎依然為算力、持幣數量等等,而各種不同的智能設備之間的差距越來越顯著,這樣的作法顯然並不太適用於智能家居環境中,而且容易造成整個系統難以達到真正的去中心化。因此,本論文將在工作量證明(Proof of Work)的基礎上提出一個新的共識演算法,其透過改變工作量證明中區塊產生時要求的前 X 位驗證值,並且降低計算難度,以免造成大量延遲。同時,在上鏈時不再比較廣播的速度,而是通過比較一定時間內產生區塊的隨機數(Nonce) 大小來決定出塊的節點 (Node)。這樣做雖然犧牲了一定的出塊時間,但是去中心化程度可以大大提高。最後,實驗結果顯示:此協議在去中心化程度上的表現比較同類演算法有顯著的改善。


    The consensus protocol is the core of the blockchain and it determines how the blockchain works. The decentralization is one of the important factors that the blockchain can be developed so far and it is also one of the most significant features of the blockchain. With the advent of the smart home era, the blockchain has begun to enter our lives along with the Internet of things. However, the basis of various consensus algorithms is still computing power, number of coins, etc, and the gap between different smart devices is becoming more and more significant. Such an approach is obviously not suitable for the smart home environment. Obviously, it is easy to cause the entire system to be difficult to achieve the true decentralization. Therefore, this thesis will propose a new consensus protocol based on the proof of work (PoW) by changing the first X-bit verification value required when the block is generated in PoW and reducing the difficulty of calculation to avoid causing a lot of delay. At the same time, the broadcast speed is no longer compared when linking to the chain. Instead, the node to generate the block is determined by comparing the random number (nonce) generated in a certain period. Undoubtedly, this sacrifices a certain amount of the block time but the degree of decentralization can be greatly improved. Finally, the experimental results succssfully show that the performance of our proposed protocol significantly outperforms the closely related algorithms.

    目 錄 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 第一章、緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 物聯網和智能家居 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 區塊鏈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 工作量證明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 去中心化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 論文組織 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章、相關研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 區塊鏈技術 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 加密貨幣領域去中心化的現狀 . . . . . . . . . . . . . . . . . . . . . . 8 2.3 智能家居中的去中心化 . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 本論文之貢獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 第三章、方法設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 PoE 的架構和安全性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 vi 3.2 區塊的生成 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 區塊的驗證和同步 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 第四章、系統評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 開發環境 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 評估方式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.1 基尼係數和洛倫茲曲線 . . . . . . . . . . . . . . . . . . . . . . 23 4.2.2 公平指數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.3 熵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.4 歐幾理得距離 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.5 理論結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 實驗結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.4 與 PoS 和 PoA 比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 第五章、結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    [1] G. Zhang and J. Xie, “Blockchain­enabled security­aware applications in home in￾ternet of thing,” in Proc. International Conference on Communications, Information
    System and Computer Engineering (CISCE), pp. 559–565, Jul. 2019.
    [2] A. Dorri, S. S. Kanhere, and R. Jurdak, “Blockchain in internet of things: Challenges
    and solutions,” ArXiv Preprint ArXiv:1608.05187, Aug. 2016.
    [3] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen­Porisini, “Security, privacy and
    trust in Internet of Things: The road ahead,” Computer Networks, vol. 76, no. 19,
    pp. 146–164, Jan. 2015.
    [4] S. Zheng, N. Apthorpe, M. Chetty, and N. Feamster, “User perceptions of smart
    home IoT privacy,” Proceedings of the ACM on Human­Computer Interaction,
    vol. 2, no. CSCW, pp. 1–20, Nov. 2018.
    [5] M. AbuNaser and A. A. Alkhatib, “Advanced survey of blockchain for the Internet
    of Things smart home,” in Proc. IEEE Jordan International Joint Conference on
    Electrical Engineering and Information Technology (JEEIT), pp. 58–62, Apr. 2019.
    [6] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for IoT security
    and privacy: The case study of a smart home,” in Proc. IEEE International Con￾ference on Pervasive Computing and Communications Workshops (PerCom work￾shops), pp. 618–623, May 2017.
    [7] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of security and
    privacy in distributed Internet of Things,” Computer Networks, vol. 57, no. 10,
    pp. 2266–2279, Jul. 2013.
    [8] D. Sheeba and S. Jayalakshmi, “Lightweight blockchain to improve security and pri￾vacy in smarthome,” International Journal of Recent Technology and Engineering,
    vol. 8, no. 6, pp. 5021–5027, Mar. 2020.
    32
    [9] R. K. Srivastav, D. Agrawal, and A. Shrivastava, “A survey on vulnerabilities and
    performance evaluation criteria in blockchain technology,” Advances in Distributed
    Computing and Artificial Intelligence Journal, vol. 9, no. 2, pp. 91–105, Sep. 2020.
    [10] J. Kongmanee, P. Kijsanayothin, and R. Hewett, “Securing smart contracts in
    blockchain,” in Proc. IEEE/ACM International Conference on Automated Software
    Engineering Workshop (ASEW), pp. 69–76, Nov. 2019.
    [11] R. Doku, D. B. Rawat, M. Garuba, and L. Njilla, “Lightchain: On the lightweight
    blockchain for the Internet­of­Things,” in Proc. IEEE International Conference on
    Smart Computing (SMARTCOMP), pp. 444–448, Jun. 2019.
    [12] S. Nakamoto and A. Bitcoin, “A peer­to­peer electronic cash system,” Bitcoin.–URL:
    https://bitcoin. org/bitcoin. pdf, vol. 4, no. 1, Oct. 2008.
    [13] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better—How to make bitcoin a
    better currency,” in Proc. International Conference on Financial Cryptography and
    Data Security, pp. 399–414, Aug. 2012.
    [14] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile blockchain
    meets edge computing,” IEEE Communications Magazine, vol. 56, no. 8, pp. 33–
    39, Aug. 2018.
    [15] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proc. ACM Symposium on
    Principles of Distributed Computing, pp. 315–324, Jul. 2017.
    [16] P. Baran, “On distributed communications networks,” IEEE Transactions on Com￾munications Systems, vol. 12, no. 1, pp. 1–9, Mar. 1964.
    [17] V. Buterin, “The meaning of decentralization,” Medium. com, vol. 6, Feb. 2017.
    [18] S. P. Gochhayat, S. Shetty, R. Mukkamala, P. Foytik, G. A. Kamhoua, and
    L. Njilla, “Measuring decentrality in blockchain based systems,” IEEE Access,
    vol. 8, pp. 178372–178390, Sep. 2020.
    [19] S. Chu and S. Wang, “The curses of blockchain decentralization,” ArXiv Preprint
    ArXiv:1810.02937, Oct. 2018.
    33
    [20] C. Troncoso, M. Isaakidis, G. Danezis, and H. Halpin, “Systematizing decentraliza￾tion and privacy: Lessons from 15 years of research and deployments,” Proceedings
    on Privacy Enhancing Technologies, vol. 2017, no. 4, pp. 404–426, Oct. 2017.
    [21] L. J. Valdivia, C. Del­Valle­Soto, J. Rodriguez, and M. Alcaraz, “Decentralization:
    The failed promise of cryptocurrencies,” IT Professional, vol. 21, no. 2, pp. 33–40,
    Mar. 2019.
    [22] R. Chatterjee and R. Chatterjee, “An overview of the emerging technology:
    Blockchain,” in Proc. International Conference on Computational Intelligence and
    Networks (CINE), pp. 126–127, Oct. 2017.
    [23] A. Narayanan and M. Möser, “Obfuscation in bitcoin: Techniques and politics,”
    ArXiv Preprint ArXiv:1706.05432, Jan. 2017.
    [24] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and H. Janicke,
    “Blockchain technologies for the internet of things: Research issues and challenges,”
    IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2188–2204, Nov. 2018.
    [25] V. Dedeoglu, R. Jurdak, A. Dorri, R. Lunardi, R. Michelin, A. Zorzo, and S. Kan￾here, “Blockchain technologies for IoT,” in Advanced Applications of Blockchain
    Technology, pp. 55–89, Springer, Sep. 2020.
    [26] C. MacGillivray, V. Turner, R. Clarke, J. Feblowitz, K. Knickle, L. Lamy, M. Xiang,
    A. Siviero, and M. Cansfield, “IDC future scape: Worldwide internet of things 2017
    predictions,” in IDC Web Conference, Nov. 2016.
    [27] 杨剑勇, “智能家居蕴藏 6000 亿市场机遇,这条赛道有哪些核心玩家?.”
    https://www.sohu.com/a/408243163_2205282020.12.23, Dec. 23 ,2020.
    [28] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure
    proof­of­stake blockchain protocol,” in Proc. International Cryptology Conference,
    pp. 357–388, Jul. 2017.
    [29] T. Ogawa, H. Kima, and N. Miyaho, “Proposal of proof­of­lucky­id (PoL) to solve
    the problems of PoW and PoS,” in Proc. IEEE International Conference on Internet
    of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
    34
    and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
    (SmartData), pp. 1212–1218, Aug. 2018.
    [30] T. Tantidham and Y. N. Aung, “Emergency service for smart home system using
    ethereum blockchain: System and architecture,” in Proc. IEEE International Con￾ference on Pervasive Computing and Communications Workshops (PerCom Work￾shops), pp. 888–893, Mar. 2019.
    [31] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, “Sok:
    Research perspectives and challenges for bitcoin and cryptocurrencies,” in Proc.
    IEEE Symposium on Security and Privacy, pp. 104–121, May 2015.
    [32] B. Group, “Proof of stake vs proof of work.” bitfury.com/
    white-papers-research/page:2, Dec. 27 ,2017.
    [33] A. Poelstra, “Distributed consensus from proof of stake is impossible,” Self￾published Paper, May 2014.
    [34] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun, “Misbe￾havior in bitcoin: A study of double­spending and accountability,” ACM Trans. Info.
    Syst. Secur., vol. 18, no. 1, pp. 1–32, May 2015.
    [35] P. K. Singh, R. Singh, S. K. Nandi, and S. Nandi, “Managing smart home appliances
    with proof of authority and blockchain,” in International Conference on Innovations
    for Community Services, pp. 221–232, Jun. 2019.
    [36] Bitcoin, “Hash rate.” https://history.btc126.com/hashrate/, Dec. 14 ,2020.
    [37] Bitcoin, “Bitcoin pools.” https://history.btc126.com/pools/, Dec. 14 ,2020.
    [38] Bitcoin, “Bitcoin nodes.” https://bitnodes.io/api/#listnodes, Dec. 13 ,
    2020.
    [39] Ethereum, “Ethereum pools.” https://history.btc126.com/pools/eth/, Dec.
    14 ,2020.
    [40] BitcoinCash, “Bitcoin cash pools.” https://history.btc126.com/pools/bch/,
    Dec. 14 ,2020.
    35
    [41] Q. Xu, Z. He, Z. Li, and M. Xiao, “Building an ethereum­based decentralized smart
    home system,” in Proc. IEEE International Conference on Parallel and Distributed
    Systems (ICPADS), pp. 1004–1009, Dec. 2018.
    [42] M. Rousey, “A complete guide to the proof of authority (PoA) algorithm.” https:
    //changelly.com/blog/what-is-proof-of-authority-poa/, Sep. 1 ,2019.
    [43] B. S. Srinivasan and L. Lee, “Quantifying decentralization.(2017).” URL: https://
    news. earn. com/quantifying­decentralization­e39db233c28e, Nov. 11 ,2019.
    [44] R. K. Jain, D.­M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness
    and discrimination,” Eastern Research Laboratory, Digital Equipment Corporation,
    Hudson, MA, Sep. 1984.
    [45] M. H. Jakubowski, R. Venkatesan, and Y. Yacobi, “Quantifying trust,” IACR Cryptol.
    ePrint Arch., vol. 2010, pp. 246–254, Jan. 2009.
    [46] B. Huang, Z. Liu, J. Chen, A. Liu, Q. Liu, and Q. He, “Behavior pattern clustering in blockchain networks,” Multimedia Tools and Applications, vol. 76, no. 19,
    pp. 20099–20110, Jan. 2017.
    [47] H. Tang, Y. Jiao, B. Huang, C. Lin, S. Goyal, and B. Wang, “Learning to classify blockchain peers according to their behavior sequences,” IEEE Access, vol. 6,
    pp. 71208–71215, Nov. 2018.

    QR CODE